Skip to main content Skip to search
Displaying 51 - 75 of 3391

Pages

  • Page
  • of 136
This article reviews the author's program of research on the neural substrates of emotion and affective style and their behavioral and peripheral biological correlates. Two core dimensions along which affect is organized are approach and withdrawal. Some of the key circuitry underlying approach and withdrawal components of emotion is reviewed with an emphasis on the role played by different sectors of the prefrontal cortex (PFC) and amygdala. Affective style refers to individual differences in valence-specific features of emotional reactivity and regulation. The different parameters of affective style can be objectively measured using specific laboratory probes. Relations between individual differences in prefrontal and amygdala function and specific components of affective style are illustrated. The final section of the article concludes with a brief discussion of plasticity in the central circuitry of emotion and the possibility that this circuitry can be shaped by training experiences that might potentially promote a more resilient, positive affective style. The implications of this body of work for a broader conception of psychophysiology and for training the next generation of psychophysiologists are considered in the conclusion.
Zotero Collections:

This past year has seen significant advances in our understanding of the physiology of emotion. Attention continues to focus on the amygdala and its interconnections with prefrontal cortical regions. New evidence underscores the importance of lateralization for emotion. There are also new findings on the physiological predictors of individual differences in emotional behavior and experience, and on the role of autonomic arousal in emotional memory.
Zotero Collections:

Individual differences in emotional reactivity or affective style can be decomposed into more elementary constituents. Several separable of affective style are identified such as the threshold for reactivity, peak amplitude of response, the rise time to peak and the recovery time. latter two characteristics constitute components of affective chronometry The circuitry that underlies two fundamental forms of motivation and and withdrawal-related processes-is described. Data on differences in functional activity in certain components of these are next reviewed, with an emphasis on the nomological network of surrounding individual differences in asymmetric prefrontal The relevance of such differences for understanding the nature affective dysfunction in affective disorders is then considered. The ends by considering what the prefrontal cortex “does” in certain of affective style and highlights some of the important questions for future research.
Zotero Tags:
Zotero Collections:

Considerable evidence exists to support an association between psychological states and immune function. However, the mechanisms by which such states are instantiated in the brain and influence the immune system are poorly understood. The present study investigated relations among physiological measures of affective style, psychological well being, and immune function. Negative and positive affect were elicited by using an autobiographical writing task. Electroencephalography and affect-modulated eye-blink startle were used to measure trait and state negative affect. Participants were vaccinated for influenza, and antibody titers after the vaccine were assayed to provide an in vivo measure of immune function. Higher levels of right-prefrontal electroencephalographic activation and greater magnitude of the startle reflex reliably predicted poorer immune response. These data support the hypothesis that individuals characterized by a more negative affective style mount a weaker immune response and therefore may be at greater risk for illness than those with a more positive affective style.
Zotero Tags:
Zotero Collections:

The brain circuitry underlying emotion includes several territories of the prefrontal cortex (PFC), the amygdala, hippocampus, anterior cingulate, and related structures. In general, the PFC represents emotion in the absence of immediately present incentives and thus plays a crucial role in the anticipation of the future affective consequences of action, as well as in the persistence of emotion following the offset of an elicitor. The functions of the other structures in this circuit are also considered. Individual differences in this circuitry are reviewed, with an emphasis on asymmetries within the PFC and activation of the amygdala as 2 key components of affective style. These individual differences are related to both behavioral and biological variables associated with affective style and emotion regulation. Plasticity in this circuitry and its implications for transforming emotion and cultivating positive affect and resilience are considered.

The brain circuitry underlying emotion includes several territories of the prefrontal cortex (PFC), the amygdala, hippocampus, anterior cingulate, and related structures. In general, the PFC represents emotion in the absence of immediately present incentives and thus plays a crucial role in the anticipation of the future affective consequences of action, as well as in the persistence of emotion following the offset of an elicitor. The functions of the other structures in this circuit are also considered. Individual differences in this circuitry are reviewed, with an emphasis on asymmetries within the PFC and activation of the amygdala as 2 key components of affective style. These individual differences are related to both behavioral and biological variables associated with affective style and emotion regulation. Plasticity in this circuitry and its implications for transforming emotion and cultivating positive affect and resilience are considered.
Zotero Collections:

People can experience great distress when a group to which they belong (in-group) is perceived to have committed an immoral act. We hypothesised that people would direct hostility toward a transgressing in-group whose actions threaten their self-image and evoke collective shame. Consistent with this theorising, three studies found that reminders of in-group transgression provoked several expressions of in-group-directed hostility, including in-group-directed hostile emotion (Studies 1 and 2), in-group-directed derogation (Study 2), and in-group-directed punishment (Study 3). Across studies, collective shame-but not the related group-based emotion collective guilt-mediated the relationship between in-group transgression and in-group-directed hostility. Implications for group-based emotion, social identity, and group behaviour are discussed.
Zotero Collections:

Twenty-six younger (ages 18–36 years) and 19 older (ages 60–88 years) healthy right-handed men and women were tested for interhemispheric transfer by using visual evoked potentials lo laterally presented checkerboards. Interhemispheric transfer time (IHTT) was estimated by subtracting latencies for both P100 and N160 peaks of the waveform contralateral to the stimulus from the waveform ipsilateral to the stimulus for homologous sites. The quality of interhemispheric transfer was estimated by comparing peak-to-peak amplitudes for homologous sites. IHTT did not change across age, but there was a suppression of the waveform over the indirectly stimulated hemisphere in the older participants. The significance of this finding for age-related changes in functions mediated by the corpus callosum is discussed.
Zotero Collections:

Zen meditation, a Buddhist practice centered on attentional and postural self-regulation, has been speculated to bring about beneficial long-term effects for the individual, ranging from stress reduction to improvement of cognitive function. In this study, we examined how the regular practice of meditation may affect the normal age-related decline of cerebral gray matter volume and attentional performance observed in healthy individuals. Voxel-based morphometry for MRI anatomical brain images and a computerized sustained attention task were employed in 13 regular practitioners of Zen meditation and 13 matched controls. While control subjects displayed the expected negative correlation of both gray matter volume and attentional performance with age, meditators did not show a significant correlation of either measure with age. The effect of meditation on gray matter volume was most prominent in the putamen, a structure strongly implicated in attentional processing. These findings suggest that the regular practice of meditation may have neuroprotective effects and reduce the cognitive decline associated with normal aging.

<p>Humans often judge others egocentrically, assuming that they feel or think similarly to themselves. Emotional egocentricity bias (EEB) occurs in situations when others feel differently to oneself. Using a novel paradigm, we investigated the neurocognitive mechanisms underlying the developmental capacity to overcome such EEB in children compared with adults. We showed that children display a stronger EEB than adults and that this correlates with reduced activation in right supramarginal gyrus (rSMG) as well as reduced coupling between rSMG and left dorsolateral prefrontal cortex (lDLPFC) in children compared with adults. Crucially, functional recruitment of rSMG was associated with age-related differences in cortical thickness of this region. Although in adults the mere presence of emotional conflict occurs between self and other recruited rSMG, rSMG-lDLPFC coupling was only observed when implementing empathic judgements. Finally, resting state analyses comparing connectivity patterns of rSMG with that of right temporoparietal junction suggested a unique role of rSMG for self-other distinction in the emotional domain for adults as well as for children. Thus, children’s difficulties in overcoming EEB may be due to late maturation of regions distinguishing between conflicting socio-affective information and relaying this information to regions necessary for implementing accurate judgments.</p>
Zotero Collections:

Studies on aging and emotion suggest an increase in reported positive affect, a processing bias of positive over negative information, as well as increasingly adaptive regulation in response to negative events with advancing age. These findings imply that older individuals evaluate information differently, resulting in lowered reactivity to, and/or faster recovery from, negative information, while maintaining more positive responding to positive information. We examined this hypothesis in an ongoing study on Midlife in the US (MIDUS II) where emotional reactivity and recovery were assessed in a large number of respondents (N = 159) from a wide age range (36-84 years). We recorded eye-blink startle magnitudes and corrugator activity during and after the presentation of positive, neutral and negative pictures. The most robust age effect was found in response to neutral stimuli, where increasing age is associated with a decreased corrugator and eyeblink startle response to neutral stimuli. These data suggest that an age-related positivity effect does not essentially alter the response to emotion-laden information, but is reflected in a more positive interpretation of affectively ambiguous information. Furthermore, older women showed reduced corrugator recovery from negative pictures relative to the younger women and men, suggesting that an age-related prioritization of well-being is not necessarily reflected in adaptive regulation of negative affect.

Studies on aging and emotion suggest an increase in reported positive affect, a processing bias of positive over negative information, as well as increasingly adaptive regulation in response to negative events with advancing age. These findings imply that older individuals evaluate information differently, resulting in lowered reactivity to, and/or faster recovery from, negative information, while maintaining more positive responding to positive information. We examined this hypothesis in an ongoing study on Midlife in the US (MIDUS II) where emotional reactivity and recovery were assessed in a large number of respondents (N = 159) from a wide age range (36-84 years). We recorded eye-blink startle magnitudes and corrugator activity during and after the presentation of positive, neutral and negative pictures. The most robust age effect was found in response to neutral stimuli, where increasing age is associated with a decreased corrugator and eyeblink startle response to neutral stimuli. These data suggest that an age-related positivity effect does not essentially alter the response to emotion-laden information, but is reflected in a more positive interpretation of affectively ambiguous information. Furthermore, older women showed reduced corrugator recovery from negative pictures relative to the younger women and men, suggesting that an age-related prioritization of well-being is not necessarily reflected in adaptive regulation of negative affect.
Zotero Collections:

We are interested in investigating white matter connectivity using a novel computational framework that does not use diffusion tensor imaging (DTI) but only uses T1-weighted magnetic resonance imaging. The proposed method relies on correlating Jacobian determinants across different voxels based on the tensor-based morphometry (TBM) framework. In this paper, we show agreement between the TBM-based white matter connectivity and the DTI-based white matter atlas. As an application, altered white matter connectivity in a clinical population is determined.
Zotero Tags:
Zotero Collections:



Geringfügig erweiterte Taschenbuch-Neuausgabe des Meditationsprogramms von Jon Kabat-Zinn, das sich an jedermann/jederfrau wendet und im Alltag leicht anwendbare Übungen der Achtsamkeit und ebenso gut durchzuführende Meditationen vorstellt (Originalausgabe 1995 unter dem Titel "Stark aus eigener Kraft" BA 7/95; Taschenbuchausgabe BA 5/98) . Die mittlerweile grosse Bekanntheit des Begründers des MBSR-Konzepts zur Stressreduktion (ID-B 20/11) wird ebenso für Ausleihen sorgen wie die anhaltende Beliebtheit der Achtsamkeitspraxis allgemein

Is all yoga good for anxiety?This is a good question, and most likely it comes from her own experience that some types of yoga causes her to become more restless and some styles of yoga are more calming. I find turning to Ayurvedic Medicine can be a powerful way to find the answers to the question. According to Ayurvedic Medicine, anxiety is a sign of vata being in excess. People with a predominantly vata dosha tend to be incredibly creative, always on the go, their energy comes in bursts and they are prone to fatigue. Vatas have thin frames, dry skin and hair and cold hands and feet. Ayurvedic Medicine works on the philosophy that like increases like. So when vata goes into excess and you start to experience anxiety, it is a symptom of too much air, too much thinking, too much movement, too much in your head. This is no big deal, it is not a problem. It is simply a matter of bringing this imbalance back into balance. So you can imagine if experience has moved up into your head with worry, stress, your mind has sped up - you need practices that are calming, grounding, nourishing, slow to find balance. Vata is the most exquisitely sensitive dosha, so you need to take great care and gentleness. In my opinion, yoga styles like power yoga, vinyasa flow, ashtanga yoga, kundalini yoga, bikram yoga and hot yoga can leave delicate people that are predominantly vata feeling further exhausted, ungrounded, and stressed out. For anxiety, I would recommend practices such as yin yoga and restorative yoga. Both these styles have long holds and are incredibly grounding because they are practiced on the floor, and in the case of restorative yoga with many props. I would also recommend practices like yoga nidra which can help to release the anxiety and worry. The focused attention of bringing your awareness back into your body can help to change your neural pathways and release anxiety at its root. So today I have a gift for you, 7 days of the best and most appropriate yoga to relieve anxiety: If you made it all the way to the end give yourself a thumbs up and put, I am balancing vata dosha in the comments. Thanks for watching, Namaste, Melissa

OBJECTIVE: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation applied in a work environment with healthy employees. METHODS: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N = 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine. RESULTS: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine. CONCLUSIONS: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research.

OBJECTIVE: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation applied in a work environment with healthy employees. METHODS: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N = 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine. RESULTS: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine. CONCLUSIONS: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research.
Zotero Collections:

Pages

  • Page
  • of 136