Skip to main content Skip to search
Details
Displaying 176 - 197 of 197

Pages

  • Page
  • of 8
<p>Background Mindfulness meditation (MM) practices constitute an important group of meditative practices that have received growing attention. The aim of the present paper was to systematically review current evidence on the neurobiological changes and clinical benefits related to MM practice in psychiatric disorders, in physical illnesses and in healthy subjects.</p>

In recent years, three attentional networks have been defined in anatomical and functional terms. These functions involve alerting, orienting, and executive attention. Reaction time measures can be used to quantify the processing efficiency within each of these three networks. The Attention Network Test (ANT) is designed to evaluate alerting, orienting, and executive attention within a single 30-min testing session that can be easily performed by children, patients, and monkeys. A study with 40 normal adult subjects indicates that the ANT produces reliable single subject estimates of alerting, orienting, and executive function, and further suggests that the efficiencies of these three networks are uncorrelated. There are, however, some interactions in which alerting and orienting can modulate the degree of interference from flankers. This procedure may prove to be convenient and useful in evaluating attentional abnormalities associated with cases of brain injury, stroke, schizophrenia, and attention-deficit disorder. The ANT may also serve as an activation task for neuroimaging studies and as a phenotype for the study of the influence of genes on attentional networks.

Brain oscillatory activity is associated with different cognitive processes and plays a critical role in meditation. In this study, we investigated the temporal dynamics of oscillatory changes during Sahaj Samadhi meditation (a concentrative form of meditation that is part of Sudarshan Kriya yoga). EEG was recorded during Sudarshan Kriya yoga meditation for meditators and relaxation for controls. Spectral and coherence analysis was performed for the whole duration as well as specific blocks extracted from the initial, middle, and end portions of Sahaj Samadhi meditation or relaxation. The generation of distinct meditative states of consciousness was marked by distinct changes in spectral powers especially enhanced theta band activity during deep meditation in the frontal areas. Meditators also exhibited increased theta coherence compared to controls. The emergence of the slow frequency waves in the attention-related frontal regions provides strong support to the existing claims of frontal theta in producing meditative states along with trait effects in attentional processing. Interestingly, increased frontal theta activity was accompanied reduced activity (deactivation) in parietal–occipital areas signifying reduction in processing associated with self, space and, time.

The information processing capacity of the human mind is limited, as is evidenced by the attentional blink—a deficit in identifying the second of two targets (T1 and T2) presented in close succession. This deficit is thought to result from an overinvestment of limited resources in T1 processing. We previously reported that intensive mental training in a style of meditation aimed at reducing elaborate object processing, reduced brain resource allocation to T1, and improved T2 accuracy [Slagter, H. A., Lutz, A., Greischar, L. L., Francis, A. D., Nieuwenhuis, S., Davis, J., et al. Mental training affects distribution of limited brain resources. PloS Biology, 5, e138, 2007]. Here we report EEG spectral analyses to examine the possibility that this reduction in elaborate T1 processing rendered the system more available to process new target information, as indexed by T2-locked phase variability. Intensive mental training was associated with decreased cross-trial variability in the phase of oscillatory theta activity after successfully detected T2s, in particular, for those individuals who showed the greatest reduction in brain resource allocation to T1. These data implicate theta phase locking in conscious target perception, and suggest that after mental training the cognitive system is more rapidly available to process new target information. Mental training was not associated with changes in the amplitude of T2-induced responses or oscillatory activity before task onset. In combination, these findings illustrate the usefulness of systematic mental training in the study of the human mind by revealing the neural mechanisms that enable the brain to successfully represent target information.

Recent neuroimaging studies have identified a set of brain regions that are metabolically active during wakeful rest and consistently deactivate in a variety the performance of demanding tasks. This “default network” has been functionally linked to the stream of thoughts occurring automatically in the absence of goal-directed activity and which constitutes an aspect of mental behavior specifically addressed by many meditative practices. Zen meditation, in particular, is traditionally associated with a mental state of full awareness but reduced conceptual content, to be attained via a disciplined regulation of attention and bodily posture. Using fMRI and a simplified meditative condition interspersed with a lexical decision task, we investigated the neural correlates of conceptual processing during meditation in regular Zen practitioners and matched control subjects. While behavioral performance did not differ between groups, Zen practitioners displayed a reduced duration of the neural response linked to conceptual processing in regions of the default network, suggesting that meditative training may foster the ability to control the automatic cascade of semantic associations triggered by a stimulus and, by extension, to voluntarily regulate the flow of spontaneous mentation.

Mindfulness neuroscience is an emerging research field that investigates the underlying mechanisms of different mindfulness practices, different stages and different states of practice as well as different effects of practice over the lifespan. Mindfulness neuroscience research integrates theory and methods from eastern contemplative traditions, western psychology and neuroscience, and from neuroimaging techniques, physiological measures and behavioral tests. We here review several key theoretical and methodological challenges in the empirical study of mindfulness neuroscience and provide suggestions for overcoming these challenges.

Transcendental Meditation (TM®) is derived from ancient yogic teachings. Both short- and long-term physiological correlates of TM® practice have been studied. EEG effects include increased alpha, theta, and gamma frequencies and increased coherence and synchrony. Neuronal hypersynchrony is also a cardinal feature of epilepsy, and subjective psychic symptoms, apnea, and myoclonic jerking are characteristic of both epileptic seizures and meditative states. Clinical vignettes have highlighted the potential risk of human kindling from repetitive meditation in persons practicing TM®, but clinical studies of similar techniques suggest that meditation may also be a potential antiepileptic therapy. Future clinical studies of meditating subjects using video/EEG monitoring are warranted to determine whether behavioral phenomena have an underlying epileptic basis, and prospective clinical trials of TM® in subjects with well-delineated epilepsy syndromes are necessary to establish the safety of this technique and its potential efficacy for seizure reduction and improvement of quality of life.

Attention is a central theme in cognitive science — it exemplifies the links between the brain and behaviour, and binds psychology to the techniques of neuroscience. A visionary model suggested by Michael Posner described attention as a set of independent control networks. This challenged the previously held view of attention as a uniform concept. The idea that disparate attentional networks correlate with discrete neural circuitry and can be influenced by focal brain injuries, mental state and specific drugs has since been supported by converging data from several modern methodologies. Given the recent explosion in empirical data, attentional typologies provide powerful conceptual tools with which to contextualize and integrate these findings.
Zotero Tags:

Although the systematic study of meditation is still in its infancy, research has provided evidence for meditation-induced improvements in psychological and physiological well-being. Moreover, meditation practice has been shown not only to benefit higher-order cognitive functions but also to alter brain activity. Nevertheless, little is known about possible links to brain structure. Using high-resolution MRI data of 44 subjects, we set out to examine the underlying anatomical correlates of long-term meditation with different regional specificity (i.e., global, regional, and local). For this purpose, we applied voxel-based morphometry in association with a recently validated automated parcellation approach. We detected significantly larger gray matter volumes in meditators in the right orbito-frontal cortex (as well as in the right thalamus and left inferior temporal gyrus when co-varying for age and/or lowering applied statistical thresholds). In addition, meditators showed significantly larger volumes of the right hippocampus. Both orbito-frontal and hippocampal regions have been implicated in emotional regulation and response control. Thus, larger volumes in these regions might account for meditators' singular abilities and habits to cultivate positive emotions, retain emotional stability, and engage in mindful behavior. We further suggest that these regional alterations in brain structures constitute part of the underlying neurological correlate of long-term meditation independent of a specific style and practice. Future longitudinal analyses are necessary to establish the presence and direction of a causal link between meditation practice and brain anatomy.

<p>In this book Zen Buddhism becomes the opening wedge for an extraordinarily wide-ranging exploration of consciousness. In order to understand which brain mechanisms produce Zen states, one needs some understanding of the anatomy, physiology, and chemistry of the brain. Austin, both a neurologist and a Zen practitioner, interweaves the most recent brain research with the personal narrative of his Zen experiences. The science is both inclusive and rigorous; the Zen sections are clear and evocative. Along the way, Austin examines such topics as similar states in other disciplines and religions, sleep and dreams, mental illness, consciousness-altering drugs, and the social consequences of the advanced stage of ongoing enlightenment.</p>
Zotero Tags:

Pages

  • Page
  • of 8