Skip to main content Skip to search
Details
Displaying 76 - 79 of 79

Pages

  • Page
  • of 4
Four experiments testing right-handed adult males examined interhemispheric transfer time (IHTT) estimation with visual evoked potentials (EPs) elicited in response to hemiretinal presentations of checkerboard-flash stimuli. Experiment 1 was a study of the relation between reaction time (RT) and EP measures of IHTT. EP measures provided more valid estimates than RT measures because more subjects showed IHTT in the direction of anatomical prediction. Experiment 2 showed that EPs derived from lateral occipital sites provided more valid and longer estimates of IHTT compared with EPs from medial occipital sites. Experiment 3 showed no difference between random versus blocked hemiretinal stimuli. Experiment 4 showed that IHTT derived with a linked-ears reference provided more valid estimates than IHTT derived with a mid-frontal reference and that small changes in stimulus eccentricity did not influence IHTT. The findings of these experiments indicate that noninvasive estimates of visual IHTT can be obtained in humans.
Zotero Collections:

This commentary provides reflections on the current state of affairs in research on EEG frontal asymmetries associated with affect. Although considerable progress has occurred since the first report on this topic 25 years ago, research on frontal EEG asymmetries associated with affect has largely evolved in the absence of any serious connection with neuroscience research on the structure and function of the primate prefrontal cortex (PFC). Such integration is important as this work progresses since the neuroscience literature can help to understand what the prefrontal cortex is "doing" in affective processing. Data from the neuroscience literature on the heterogeneity of different sectors of the PFC are introduced and more specific hypotheses are offered about what different sectors of the PFC might be doing in affect. A number of methodological issues associated with EEG measures of functional prefrontal asymmetries are also considered.
Zotero Collections:

BACKGROUND: Recent studies have highlighted the role of right-sided anterior temporal and prefrontal activation during anxiety, yet no study has been performed with social phobics that assesses regional brain and autonomic function. This study compared electroencephalograms (EEGs) and autonomic activity in social phobics and controls while they anticipated making a public speech. METHODS: Electroencephalograms from 14 scalp locations, heart rate, and blood pressure were recorded while 18 DSM-IV social phobics and 10 controls anticipated making a public speech, as well as immediately after the speech was made. Self-reports of anxiety and affect were also obtained. RESULTS: Phobics showed a significantly greater increase in anxiety and negative affect during the anticipation condition compared with controls. Heart rate was elevated in the phobics relative to the controls in most conditions. Phobics showed a marked increase in right-sided activation in the anterior temporal and lateral prefrontal scalp regions. These heart rate and EEG changes together accounted for > 48% of the variance in the increase in negative affect during the anticipation phase. CONCLUSIONS: These findings support the hypothesis of right-sided anterior cortical activation during anxiety and indicate that the combination of EEG and heart rate changes during anticipation account for substantial variance in reported negative affect.
Zotero Collections:

Pages

  • Page
  • of 4