Skip to main content Skip to search
Details
Displaying 26 - 50 of 65

Pages

  • Page
  • of 3
The relation between brain activity and the immune system was evaluated by assessing immune responses in 20 healthy women who manifested extreme differences in the asymmetry of frontal cortex activation. One group showed extreme and stable left frontal activation; the other group showed extreme and stable right frontal activation. As predicted, women with extreme right frontal activation had significantly lower levels of natural killer cell activity (at effector:target cell ratios of 33:1 and 11:1) than did left frontally activated individuals. This difference did not extend to two other immune measures, lymphocyte proliferation and T-cell subsets. However, higher immunoglobulin levels of the M class were observed in the right frontal group. In this study, the immune patterns could not be accounted for by plasma cortisol levels, anxiety- and depression-related symptomatology, or recent health histories. These findings support the hypothesis that there is a specific association between frontal brain asymmetry and certain immune responses.
Zotero Collections:

The influence of approach and avoidance tendencies on affect, reasoning, and behavior has attracted substantial interest from researchers across various areas of psychology. Currently, frontal electroencephalographic (EEG) asymmetry in favor of left prefrontal regions is assumed to reflect the propensity to respond with approach-related tendencies. To test this hypothesis, we recorded resting EEG in 18 subjects, who separately performed a verbal memory task under three incentive conditions (neutral, reward, and punishment). Using a source-localization technique, we found that higher task-independent alpha2 (10.5-12 Hz) activity within left dorsolateral prefrontal and medial orbitofrontal regions was associated with stronger bias to respond to reward-related cues. Left prefrontal resting activity accounted for 54.8% of the variance in reward bias. These findings not only confirm that frontal EEG asymmetry modulates the propensity to engage in appetitively motivated behavior, but also provide anatomical details about the underlying brain systems.
Zotero Collections:

Examined whether certain features of infant temperament might be related to individual differences in the asymmetry of resting frontal activation. EEG was recorded from the left and right frontal and parietal scalp regions of 13 normal 10-month-old infants. Infant behavior was then observed during a brief period of maternal separation. Those infants who cried in response to maternal separation showed greater right frontal activation during the preceding baseline period compared with infants who did not cry. Frontal activation asymmetry may be a state-independent marker for individual differences in threshold of reactivity to stressful events and vulnerability to particular emotions.
Zotero Collections:

The capacity to anticipate aversive circumstances is central not only to successful adaptation but also to understanding the abnormalities that contribute to excessive worry and anxiety disorders. Forecasting and reacting to aversive events mobilize a host of affective and cognitive capacities and corresponding brain processes. Rapid event-related functional magnetic resonance imaging (fMRI) in 21 healthy volunteers assessed the overlap and divergence in the neural instantiation of anticipating and being exposed to aversive pictures. Brain areas jointly activated by the anticipation of and exposure to aversive pictures included the dorsal amygdala, anterior insula, dorsal anterior cingulate cortex (ACC), right dorsolateral prefrontal cortex (DLPFC), and right posterior orbitofrontal cortex (OFC). Anticipatory processes were uniquely associated with activations in rostral ACC, a more superior sector of the right DLPFC, and more medial sectors of the bilateral OFC. Activation of the right DLPFC in anticipation of aversion was associated with self-reports of increased negative affect, whereas OFC activation was associated with increases in both positive and negative affect. These results show that anticipation of aversion recruits key brain regions that respond to aversion, thereby potentially enhancing adaptive responses to aversive events.
Zotero Collections:

Although there are many imaging studies on traditional ROI-based amygdala volumetry, there are very few studies on modeling amygdala shape variations. This paper presents a unified computational and statistical framework for modeling amygdala shape variations in a clinical population. The weighted spherical harmonic representation is used to parameterize, smooth out, and normalize amygdala surfaces. The representation is subsequently used as an input for multivariate linear models accounting for nuisance covariates such as age and brain size difference using the SurfStat package that completely avoids the complexity of specifying design matrices. The methodology has been applied for quantifying abnormal local amygdala shape variations in 22 high functioning autistic subjects.
Zotero Collections:

BACKGROUND: Although it has been hypothesized that glucocorticoid hypersecretion in depressed patients leads to neuronal atrophy in the hippocampus, magnetic resonance imaging (MRI) -based morphometry studies of the hippocampus to date have produced mixed results. METHODS: In our MRI study, hippocampal volumes were measured in 25 depressed patients (13 with melancholia and 12 without melancholia) and 15 control subjects. RESULTS: No significant differences in hippocampus volumes were found between any of the subject groups, although within subjects right hippocampal volumes were found to be significantly larger than left hippocampal volumes. Additionally, right and total (left + right) hippocampal volumes in control and depressed subjects were found to be positively correlated with trait anxiety as measured by the state/trait anxiety inventory. CONCLUSIONS: Because our subject group is younger than those in studies reporting hippocampal atrophy, we conclude that longitudinal studies will be necessary for investigation of the lifelong course of hippocampal volumetry.
Zotero Collections:

Research on the anatomical bases of interhemispheric interaction, including individual differences in corpus callosum (CC) anatomy, is reviewed. These anatomical findings form the basis for the discussion of two major themes. The first considers interhemispheric transfer time (IHTT) and related issues. These include varieties of IHTT and possible directional asymmetries of IHTT. Evidence suggests that pathological variations in IHTT may have cognitive consequences. The second involves conditions under which interhemispheric interaction is necessary and beneficial. The data suggest that when both hemispheres have some competence at a difficult task, there is a benefit to interhemispheric interaction. The role of the CC in the dynamic distribution of attention may be particularly relevant to this advantage. Throughout the article reference is made to individual differences and developmental changes associated with interhemispheric interaction.
Zotero Collections:

This research assessed whether individual differences in anterior brain asymmetry are linked to differences in basic dimensions of emotion. In each of 2 experimental sessions, separated by 3 weeks, resting electroencephalogram (EEG) activity was recorded from female adults during 8 60-s baselines. Mean alpha power asymmetry across both sessions was extracted in mid-frontal and anterior temporal sites. Across both regions, groups demonstrating stable and extreme relative left anterior activation reported increased generalized positive affect (PA) and decreased generalized negative affect (NA) compared with groups demonstrating stable and extreme relative right anterior activation. Additional correlational analyses revealed robust relations between anterior asymmetry and PA and NA, particularly among subjects who demonstrated stable patterns of EEG activation over time. Anterior asymmetry was unrelated to individual differences in generalized reactivity.
Zotero Collections:

Reliable individual differences in electrophysiological measures of prefrontal activation asymmetry exist and predict dispositional mood and other psychological and biological indices of affective style. Subjects with greater relative right-sided activation report more dispositional negative affect and react with greater intensity to negative emotional challenges than their left-activated counterparts. We previously established that such individual differences in measures of prefrontal activation asymmetry were related to basal NK function, with left-activated subjects exhibiting higher levels of NK function than right-activated subjects. The present study was designed to replicate and extend these earlier findings. Subjects were tested in five experimental sessions over the course of 1 year. During the first two sessions, baseline measures of brain electrical activity were obtained to derive indices of asymmetric activation. During sessions 3 and 4, blood samples were taken during a nonstressful period in the semester and then 24 h prior to the subjects' most important final examination. During session 5, subjects were presented with positive and negative film clips 30 min in duration. Blood samples were obtained before and after the film clips. Subjects with greater relative right-sided activation at baseline showed lower levels of basal NK function. They also showed a greater decrease in NK function during the final exam period compared to the baseline period. Subjects with greater relative left-sided activation showed a larger increase in NK function from before to after the positive film clip. These findings indicate that individual differences in electrophysiological measures of asymmetric prefrontal activation account for a significant portion of variance in both basal levels of, and change in NK function.
Zotero Collections:

Musically proficient and non-proficient right-handed subjects were requested to list in a pre-experimental questionnaire three familiar songs, whose words and melody were well known. They were then instructed in two separate experiments, to whistle the melody of a song, talk the lyrics to a song, or sing a song each for 3 1-min trials performed with eyes closed. EEG was recorded from the left and right occipital areas (O1 and O2) in Experiment I and from the left and right parietal areas (P3 and P4) in Experiment II, and filtered for 8–13 Hz activity on-line. Comparable results were obtained in both experiments and indicated that non-musically trained subjects show significantly greater relative right hemisphere activation while whistling the melody of a song vs talking the lyrics to a song. Musically trained subjects show no differences in EEG asymmetry between these tasks. In addition, there were no group differences in asymmetry during the talking and singing conditions. These data are consistent with recent evidence suggesting that musical training is associated with the adoption of an analytic and sequential processing mode toward melodic information, and suggest that long term training in complex cognitive skills has functional neural concomitants.
Zotero Collections:

A growing body of literature has documented the differential role of the frontal regions of the two cerebral hemispheres in certain positive and negative affective processes. This corpus of evidence has led to the hypothesis of a possible differential effect of diazepam on asymmetry of frontal activation. To examine this question, nine infant rhesus monkeys were tested on two occasions during which brain electrical activity was recorded from left and right frontal and parietal scalp regions. During one session, recordings were obtained under a baseline restraint condition and then after an injection of diazepam (1 mg/kg). In the other session, following the same baseline restraint condition, a vehicle injection was given. In response to diazepam, the animals showed an asymmetrical decrease in power in the 4-8 Hz frequency band, which was most pronounced in the left frontal region. No change in electroencephalogram (EEG) activity was observed in response to vehicle. Asymmetry in parietal EEG activity was also unchanged by diazepam. Diazepam also produced overall reductions in power across different frequency bands in both frontal and parietal regions. Good test-retest stability of EEG measures of activation asymmetry was also found between the two testing sessions separated by three months. The possible proximal cause of the asymmetrical change in frontal brain electrical activity in response to diazepam, as well as the implications of these findings for understanding the mechanism of action of benzodiazepines are discussed.
Zotero Collections:

Based on previous findings in humans and rhesus monkeys suggesting that diazepam has asymmetrical effects on frontal lobe activity and other literature supporting a role for the benzodiazepine system in the mediation of individual differences in anxiety and fearfulness, the relation between asymmetrical changes in scalp-recorded regional brain activity in response to diazepam and the temperamental dimension of behavioral inhibition indexed by freezing time in 9 rhesus monkeys was examined. Animals showed greater relative left-sided frontal activation in response to diazepam compared with the preceding baseline. The magnitude of this shift was strongly correlated with an aggregate measure of freezing time (r = .82). The implications of these findings for understanding the role of regional differences in the benzodiazepine system in mediating individual differences in fearfulness are discussed.
Zotero Collections:

Baseline resting electroencephalogram activity was recorded with 3 different reference montages from 15 clinically depressed and 13 control subjects. Power in all frequency bands was extracted by fast Fourier transformation. There was a significant Group X Hemisphere interaction in the mid-frontal region, for the alpha band power only. Depressed subjects had less left-sided activation (i.e., more alpha activity) than did normal control subjects. This pattern of diminished left-sided frontal activation is interpreted as indicating a deficit in approach mechanisms in depressed subjects.
Zotero Collections:

Many studies in humans suggest that altered temporal lobe functioning, especially functioning in the right temporal lobe, is involved in mystical and religious experiences. We investigated temporal lobe functioning in individuals who reported having transcendental "near-death experiences" during life-threatening events. These individuals were found to have more temporal lobe epileptiform electroencephalographic activity than control subjects and also reported significantly more temporal lobe epileptic symptoms. Contrary to predictions, epileptiform activity was nearly completely lateralized to the left hemisphere. The near-death experience was not associated with dysfunctional stress reactions such as dissociation, posttraumatic stress disorder, and substance abuse, but rather was associated with positive coping styles. Additional analyses revealed that near-death experiencers had altered sleep patterns, specifically, a shorter duration of sleep and delayed REM sleep relative to the control group. These results suggest that altered temporal lobe functioning may be involved in the near-death experience and that individuals who have had such experiences are physiologically distinct from the general population.
Zotero Collections:

Pain can be modulated by several cognitive techniques, typically involving increased cognitive control and decreased sensory processing. Recently, it has been demonstrated that pain can also be attenuated by mindfulness. Here, we investigate the underlying brain mechanisms by which the state of mindfulness reduces pain. Mindfulness practitioners and controls received unpleasant electric stimuli in the functional magnetic resonance imaging scanner during a mindfulness and a control condition. Mindfulness practitioners, but not controls, were able to reduce pain unpleasantness by 22% and anticipatory anxiety by 29% during a mindful state. In the brain, this reduction was associated with decreased activation in the lateral prefrontal cortex and increased activation in the right posterior insula during stimulation and increased rostral anterior cingulate cortex activation during the anticipation of pain. These findings reveal a unique mechanism of pain modulation, comprising increased sensory processing and decreased cognitive control, and are in sharp contrast to established pain modulation mechanisms.

<p>Reviews selective behavioral, psychophysiological, and neuropsychological research bearing on how affective space should be parsed. Neither facial expression nor autonomic nervous system activity is found to provide unique markers for particular discrete emotions. The dimensions of approach and withdrawal are introduced as fundamental systems relevant to differentiating affective space. The role of frontal and anterior temporal asymmetries in mediating approach- and withdrawal-related emotion is considered. Individual differences in tonic anterior activation asymmetry are present and are relatively stable over time. Such differences are associated with an individual's propensity to display different types of emotion, mood, and psychopathology. The conceptual and methodological implications of this perspective are considered.</p>
Zotero Collections:

Examined were electroencephalogram (EEG) asymmetries during the presence of discrete facial signs of emotion among 10-month-old infants who were tested in a standard stranger- and mother-approach paradigm that included a brief separation from mother. Data underscore the usefulness of EEG measures of hemispheric activation in differentiating among certain emotional states. (RH)
Zotero Collections:

The purpose of the present study was twofold: (1) to obtain information on central mechanisms underlying cardiac self-regulation by comparing changes in cerebral asymmetry during self-control of heart rate with changes observed during the production of affective imagery; and (2) to explore sex differences in hemispheric function during performance of these two tasks. Heart rate (HR) and bilateral parietal EEG filtered for alpha were recorded from 20 right-handed males and females during two discrete experimental phases: cardiac control and image self-generation. HR showed significant effects between up versus down in prefeedback and feedback, and between anger versus relaxing imagery in the image phase. The EEG data indicated similar patterns of hemispheric asymmetry in both sexes during prefeedback. However, with the introduction of feedback, females shifted to greater relative right hemisphere activation comparable to what they show when specifically instructed to think emotional thoughts; males showed little differentiation between conditions. These data indicate that the Self-regulation of HR with biofeedback in males and females may be accomplished by the utilization of strategies involving different underlying patterns of neuropsychological processes.
Zotero Collections:

Temperamentally anxious individuals can be identified in childhood and are at risk to develop anxiety and depressive disorders. In addition, these individuals tend to have extreme asymmetric right prefrontal brain activity. Although common and clinically important, little is known about the pathophysiology of anxious temperament. Regardless, indirect evidence from rodent studies and difficult to interpret primate studies is used to support the hypothesis that the amygdala plays a central role. In previous studies using rhesus monkeys, we characterized an anxious temperament endophenotype that is associated with excessive anxiety and fear-related responses and increased electrical activity in right frontal brain regions. To examine the role of the amygdala in mediating this endophenotype and other fearful responses, we prepared monkeys with selective fiber sparing ibotenic acid lesions of the amygdala. Unconditioned trait-like anxiety-fear responses remained intact in monkeys with >95% bilateral amygdala destruction. In addition, the lesions did not affect EEG frontal asymmetry. However, acute unconditioned fear responses, such as those elicited by exposure to a snake and to an unfamiliar threatening conspecific were blunted in monkeys with >70% lesions. These findings demonstrate that the primate amygdala is involved in mediating some acute unconditioned fear responses but challenge the notion that the amygdala is the key structure underlying the dispositional behavioral and physiological characteristics of anxious temperament.
Zotero Collections:

We examined whether resting anterior electroencephalographic (EEG) asymmetry in the alpha frequency band has psychometric properties that would be expected of a measure assessing individual differences. In each of two experimental sessions, separated by three weeks, resting EEG in midfrontal and anterior temporal sites was recorded from 85 female adults during eight 60-s baselines. Resting alpha asymmetry demonstrated acceptable test-retest stability and excellent internal consistency reliability. Analyses including other frequency bands indicated that degree of stability varied somewhat as a function of band and region. In addition, asymmetry was less stable than absolute power. Discussion focuses on the implications of the present findings for the measurement and conceptualization of resting anterior asymmetry.
Zotero Collections:

Differences between dyslexics and controls in the unimanual and bimanual conditions of the peg placement section of the Purdue Pegboard Test were examined. Twenty-three disabled and twenty-three normal readers were studied. The groups were carefully screened on a neuropsychological battery. The disabled readers were comprised of a relatively homogeneous language-disordered subgroup exhibiting deficits in naming. Significant Group X Condition interactions were obtained for both raw and percentile scores and indicated that disabled readers performed worse than controls in the unimanual compared to bimanual conditions. The dyslexics performed particularly poorly compared with controls on the left hand condition. The implications of these data for hypotheses which argue for left hemisphere dysfunction, as well as those which posit interhemispheric transfer deficits in reading disabled children, are discussed.
Zotero Collections:

This experiment was designed to assess the differential impact of initially presenting affective information to the left versus right hemisphere on both the perception of and response to the input. Nineteen right-handed subjects were presented with faces expressing happiness and sadness. Each face was presented twice to each visual field for an 8-sec duration. The electro-oculogram (EOG) was monitored and fed back to subjects to train them to keep their eyes focused on the central fixation point as well as to eliminate trials confounded by eye movement artifact. Following each slide presentation, subjects rated the intensity of the emotional expression depicted in the face and their emotional reaction to the face on a series of 7-point rating scales. Subjects reported perceiving more happiness in response to stimuli initially presented to the left hemisphere (right visual field) compared to presentations of the identical faces to the right hemisphere (left visual field). This effect was predominantly a function of ratings on sad faces. A similar, albeit less robust, effect was found on self-ratings of happiness (the degree to which the face elicited the emotion in the viewer). These data challenge the view that the right hemisphere is uniquely involved in all emotional behavior. The implications of these findings for theories concerning the lateralization of emotional behavior are discussed.
Zotero Collections:

<p>This experiment was designed to test whether reading disabled boys differ from matched controls on behavioral measures of interhemispheric transfer time (IHTT). Specifically, we proposed that language-disordered reading disabled children who had deficits in naming would show either faster or slower IHTTs compared with controls. From an initial group of 118 right-handed males, we selected a group of 25 disabled and 25 normal readers, matched on age. All subjects had to obtain a full scale IQ of 90 or above, a PIQ score of 85 or above, and a scaled score of 7 or above on the Block Design Subtest of the WISC-R. After meeting additional criteria for group assignment, manual reaction time (RT) measures of IHTT were obtained in response to simple visual and tactile stimuli during two laboratory testing sessions. Half the trials were conducted with the hands in an uncrossed orientation and half with the hands crossed in order to examine the effects of spatial compatibility on estimates of IHTT. The results revealed no overall group differences in IHTT for any of the conditions. However, correlations between IHTT measures and indices of cognitive performance indicated that faster IHTTs were significantly correlated with poorer performance on measures of reading and language function in the dyslexic group. These data are discussed within the context of a model of interhemispheric transfer deficits in disabled readers.</p>
Zotero Collections:

BACKGROUND: Anhedonia, a reduced ability to experience pleasure, is a chief symptom of major depressive disorder and is related to reduced frontostriatal connectivity when attempting to upregulate positive emotion. The present study examined another facet of positive emotion regulation associated with anhedonia-namely, the downregulation of positive affect-and its relation to prefrontal cortex (PFC) activity. METHODS: Neuroimaging data were collected from 27 individuals meeting criteria for major depressive disorder as they attempted to suppress positive emotion during a positive emotion regulation task. Their PFC activation pattern was compared with the PFC activation pattern exhibited by 19 healthy control subjects during the same task. Anhedonia scores were collected at three time points: at baseline (time 1), 8 weeks after time 1 (i.e., time 2), and 6 months after time 1 (i.e., time 3). Prefrontal cortex activity at time 1 was used to predict change in anhedonia over time. Analyses were conducted utilizing hierarchical linear modeling software. RESULTS: Depressed individuals who could not inhibit positive emotion-evinced by reduced right ventrolateral prefrontal cortex activity during attempts to dampen their experience of positive emotion in response to positive visual stimuli-exhibited a steeper anhedonia reduction slope between baseline and 8 weeks of treatment with antidepressant medication (p < .05). Control subjects showed a similar trend between baseline and time 3. CONCLUSIONS: To reduce anhedonia, it may be necessary to teach individuals how to counteract the functioning of an overactive pleasure-dampening prefrontal inhibitory system.
Zotero Collections:

Pages

  • Page
  • of 3