Skip to main content Skip to search
Details
Displaying 51 - 65 of 65

Pages

  • Page
  • of 3
Baseline resting electroencephalogram (EEG) activity was recorded from 6 normothymic depressives and 8 controls using three different reference montages. Power in all frequency bands was extracted by Fourier transformation. Significant Group X Region X Hemisphere interactions were found consistently for alpha band power only. Previously depressed subjects had less left-sided anterior and less right-sided posterior activation (i.e., more alpha activity) than did never depressed subjects. Previously depressed subjects had no history of pharmacological treatment and did not differ from controls in emotional state at the time of testing. The pattern of anterior and posterior asymmetry in the previously depressed subjects is similar to that found in acutely depressed subjects and suggests that this may be a state-independent marker for depression.
Zotero Collections:

Electroencephalogram (EEG) alpha power has been demonstrated to be inversely related to mental activity and has subsequently been used as an indirect measure of brain activation. The thalamus has been proposed as an important site for modulation of rhythmic alpha activity. Studies in animals have suggested that cortical alpha rhythms are correlated with alpha rhythms in the thalamus. However, little empirical evidence exists for this relation in humans. In the current study, resting EEG and a fluorodeoxyglucose positron emission tomography scan were measured during the same experimental session. Over a 30-min period, average EEG alpha power across 28 electrodes from 27 participants was robustly inversely correlated with glucose metabolic activity in the thalamus. These data provide the first evidence for a relation between alpha EEG power and thalamic activity in humans.
Zotero Collections:

This article assessed whether resting electroencephalographic (EEG) asymmetry in anterior regions of the brain can predict affective responses to emotion elicitors. Baseline EEG was recorded from 32 female adults, after which Ss viewed film clips preselected to elicit positive or negative affect. Resting alpha power asymmetry in the frontal region significantly predicted self-reported global negative affect in response to clips and predicted the difference between global positive and negative affect. Analyses of discrete emotions revealed a strong relation between frontal asymmetry and fear responses to films. Effects were independent of Ss mood ratings at the time at which baseline EEG was measured. Resting anterior asymmetry may be a state-independent index of the individual's predisposition to respond affectively.
Zotero Collections:

Although several studies have examined anterior asymmetric brain electrical activity and cortisol in infants, children, and adults, the direct association between asymmetry and cortisol has not systematically been reported. In nonhuman primates, greater relative right anterior activation has been associated with higher cortisol levels. The current study examines the relation between frontal electroencephalographic (EEG) asymmetry and cortisol (basal and reactive) and withdrawal-related behaviors (fear and sadness) in 6-month-old infants. As predicted, the authors found that higher basal and reactive cortisol levels were associated with extreme right EEG asymmetry. EEG during the withdrawal-negative affect task was associated with fear and sadness behaviors. Results are interpreted in the context of the previous primate work, and some putative mechanisms are discussed.
Zotero Collections:

Right-handed subjects tend to look to the left when answering affective questions. The relative shift in gaze from right to left is accentuated when the questions also involve spatial manipulation and attenuated when the questions require verbal manipulation. The data support the hypothesis that the right hemisphere has a special role in emotion in the intact brain, and that predictable patterning of hemispheric activity can occur when specific combinations of cognitive and affective processes interact.
Zotero Collections:

This paper reports three studies showing sex differences in EEG asymmetry during self-generated cognitive and affective tasks. In the first experiment, bilateral EEG, quantified for alpha on-line, was recorded from right-handed subjects while they either whistled, sang or recited lyrics of familiar songs. The results revealed significant asymmetry between the whistle and talk conditions only for subjects with no familial left-handedness and, within this group, only for females and not for males. In the second experiment, bilateral EEG was recorded while right-handed subjects (with no familial left-handedness) self-induced covert affective and non-affective states. Results revealed significantly greater relative right-hemisphere activation during emotion versus non-emotion trials only in females; males showed no significant task-dependent shifts in asymmetry between conditions. The third experiment was designed to test the hypothesis that females show greater percent time asymmetry than males during biofeedback training for symmetrical and asymmetrical EEG patterns. Results confirmed this prediction as well as indicating that females show better control of such asymmetrical cortical patterning. These findings provide new neuropsychological support for the hypothesis of greater bilateral flexibility in females during self-generation tasks.
Zotero Collections:

<p>Social cognition, including complex social judgments and attitudes, is shaped by individual learning experiences, where affect often plays a critical role. Aversive classical conditioning-a form of associative learning involving a relationship between a neutral event (conditioned stimulus, CS) and an aversive event (unconditioned stimulus, US)-represents a well-controlled paradigm to study how the acquisition of socially relevant knowledge influences behavior and the brain. Unraveling the temporal unfolding of brain mechanisms involved appears critical for an initial understanding about how social cognition operates. Here, 128-channel ERPs were recorded in 50 subjects during the acquisition phase of a differential aversive classical conditioning paradigm. The CS+ (two fearful faces) were paired 50% of the time with an aversive noise (CS upward arrow + /Paired), whereas in the remaining 50% they were not (CS upward arrow + /Unpaired); the CS- (two different fearful faces) were never paired with the noise. Scalp ERP analyses revealed differences between CS upward arrow + /Unpaired and CS- as early as approximately 120 ms post-stimulus. Tomographic source localization analyses revealed early activation modulated by the CS+ in the ventral visual pathway (e.g. fusiform gyrus, approximately 120 ms), right middle frontal gyrus (approximately 176 ms), and precuneus (approximately 240 ms). At approximately 120 ms, the CS- elicited increased activation in the left insula and left middle frontal gyrus. These findings not only confirm a critical role of prefrontal, insular, and precuneus regions in aversive conditioning, but they also suggest that biologically and socially salient information modulates activation at early stages of the information processing flow, and thus furnish initial insight about how affect and social judgments operate.</p>
Zotero Collections:

We used fMRI to examine amygdala activation in response to fearful facial expressions, measured over multiple scanning sessions. 15 human subjects underwent three scanning sessions, at 0, 2 and 8 weeks. During each session, functional brain images centered about the amygdala were acquired continuously while participants were shown alternating blocks of fearful, neutral and happy facial expressions. Intraclass correlation coefficients calculated across the sessions indicated stability of response in left amygdala to fearful faces (as a change from baseline), but considerably less left amygdala stability in responses to neutral expressions and for fear versus neutral contrasts. The results demonstrate that the measurement of fMRI BOLD responses in amygdala to fearful facial expressions might be usefully employed as an index of amygdala reactivity over extended periods. While signal change to fearful facial expressions appears robust, the experimental design employed here has yielded variable responsivity within baseline or comparison conditions. Future studies might manipulate the experimental design to either amplify or attenuate this variability, according to the goals of the research.
Zotero Collections:

<p>Previous research has reported that individuals high in the need for Power, high in inhibition, and high in power stress (the HHH group) are more likely than other individuals to report more severe illnesses. The present study investigates the possibility that the mechanism underlying this relationship is greater sympathetic activation in the HHH group which has an immunosuppressive effect. College males with the HHH syndrome reported more frequent and more severe illnesses than other individuals, as in previous studies. More of the HHH than other subjects also showed above average epinephrine excretion rates in urine and below average concentrations of immunoglobulin A in saliva (S-IgA). Furthermore, higher rates of epinephrine excretion were significantly associated with lower S-IgA concentrations, and lower S-IgA concentrations were significantly associated with reports of more frequent illnesses. The findings are interpreted as consistent with the hypothesis that a strong need for Power, if it is inhibited and stressed, leads to chronic sympathetic overactivity which has an immunosuppressive effect making individuals characterized by this syndrome more susceptible to illness.</p>
Zotero Collections:

<p>Recent evidence suggests that frontal brain electrical activity reveals asymmetries in activation in response to positive vs negative affective stimuli. This study was designed to evaluate whether this asymmetry is present at birth. Newborn infants were presented with water followed by a sucrose solution and then by a citric acid solution. Facial expression was videotaped during the presentation of the liquids and EEG was recorded from the frontal and parietal scalp regions on the left and right side. Usable EEG data were obtained from 16 newborn infants in response to these taste conditions. Videotaping of facial expression in response to these stimuli indicated the presence of disgust during both water (the first taste introduced) and citric acid. EEG was Fourier Transformed and power in the 1-3, 3-6 and 6-12 Hz bands was computed. The findings revealed that the water condition produced reductions in right-hemisphere power in the two higher frequency bands in both the scalp regions compared with the other two conditions. The sucrose condition produced greater relative left-sided activation in both regions compared with the water condition. These data, in conjunction with our previous findings of asymmetries in 10-month-old infants, indicate that stimulus-elicited affective asymmetries in brain electrical activity are present at birth.</p>
Zotero Collections:

BACKGROUND: EEG alpha power has been demonstrated to be inversely related to mental activity and has subsequently been used as an indirect measure of brain activation. The hypothesis that the thalamus serves as a neuronal oscillator of alpha rhythms has been supported by studies in animals, but only minimally by studies in humans. METHODS: In the current study, PET-derived measures of regional glucose metabolism, EEG, and structural MRI were obtained from each participant to assess the relation between thalamic metabolic activity and alpha power in depressed patients and healthy controls. The thalamus was identified and drawn on each subject's MRI. The MRI was then co-registered to the corresponding PET scan and metabolic activity from the thalamus extracted. Thalamic activity was then correlated with a 30-min aggregated average of alpha EEG power. RESULTS: Robust inverse correlations were observed in the control data, indicating that greater thalamic metabolism is correlated with decreased alpha power. No relation was found in the depressed patient data. CONCLUSIONS: The results are discussed in the context of a possible abnormality in thalamocortical circuitry associated with depression.
Zotero Collections:

Planned and reflexive behaviors often occur in the presence of emotional stimuli and within the context of an individual's acute emotional state. Therefore, determining the manner in which emotion and attention interact is an important step toward understanding how we function in the real world. Participants in the current investigation viewed centrally displayed, task-irrelevant, face distractors (angry, neutral, happy) while performing a lateralized go/no-go continuous performance task. Lateralized go targets and no-go lures that did not spatially overlap with the faces were employed to differentially probe processing in the left (LH) and right (RH) cerebral hemispheres. There was a significant interaction between expression and hemisphere, with an overall pattern such that angry distractors were associated with relatively more RH inhibitory errors than neutral or happy distractors and happy distractors with relatively more LH inhibitory errors than angry or neutral distractors. Simple effects analyses confirmed that angry faces differentially interfered with RH relative to LH inhibition and with inhibition in the RH relative to happy faces. A significant three-way interaction further revealed that state anxiety moderated relations between emotional expression and hemisphere. Under conditions of low cognitive load, more intense anxiety was associated with relatively greater RH than LH impairment in the presence of both happy and threatening distractors. By contrast, under high load, only angry distractors produced greater RH than LH interference as a function of anxiety.
Zotero Collections:

Four experiments testing right-handed adult males examined interhemispheric transfer time (IHTT) estimation with visual evoked potentials (EPs) elicited in response to hemiretinal presentations of checkerboard-flash stimuli. Experiment 1 was a study of the relation between reaction time (RT) and EP measures of IHTT. EP measures provided more valid estimates than RT measures because more subjects showed IHTT in the direction of anatomical prediction. Experiment 2 showed that EPs derived from lateral occipital sites provided more valid and longer estimates of IHTT compared with EPs from medial occipital sites. Experiment 3 showed no difference between random versus blocked hemiretinal stimuli. Experiment 4 showed that IHTT derived with a linked-ears reference provided more valid estimates than IHTT derived with a mid-frontal reference and that small changes in stimulus eccentricity did not influence IHTT. The findings of these experiments indicate that noninvasive estimates of visual IHTT can be obtained in humans.
Zotero Collections:

This commentary provides reflections on the current state of affairs in research on EEG frontal asymmetries associated with affect. Although considerable progress has occurred since the first report on this topic 25 years ago, research on frontal EEG asymmetries associated with affect has largely evolved in the absence of any serious connection with neuroscience research on the structure and function of the primate prefrontal cortex (PFC). Such integration is important as this work progresses since the neuroscience literature can help to understand what the prefrontal cortex is "doing" in affective processing. Data from the neuroscience literature on the heterogeneity of different sectors of the PFC are introduced and more specific hypotheses are offered about what different sectors of the PFC might be doing in affect. A number of methodological issues associated with EEG measures of functional prefrontal asymmetries are also considered.
Zotero Collections:

Pages

  • Page
  • of 3