Skip to main content Skip to search
Details
Displaying 1 - 2 of 2
Buddhist meditation practices have become a topic of widespread interest in both science and medicine. Traditional Buddhist formulations describe meditation as a state of relaxed alertness that must guard against both excessive hyperarousal (restlessness) and excessive hypoarousal (drowsiness, sleep). Modern applications of meditation have emphasized the hypoarousing and relaxing effects without as much emphasis on the arousing or alertness-promoting effects. In an attempt to counterbalance the plethora of data demonstrating the relaxing and hypoarousing effects of Buddhist meditation, this interdisciplinary review aims to provide evidence of meditation's arousing or wake-promoting effects by drawing both from Buddhist textual sources and from scientific studies, including subjective, behavioral, and neuroimaging studies during wakefulness, meditation, and sleep. Factors that may influence whether meditation increases or decreases arousal are discussed, with particular emphasis on dose, expertise, and contemplative trajectory. The course of meditative progress suggests a nonlinear multiphasic trajectory, such that early phases that are more effortful may produce more fatigue and sleep propensity, while later stages produce greater wakefulness as a result of neuroplastic changes and more efficient processing.
Zotero Collections:

Divides the study of human attention into 3 components: alertness, selectivity, and processing capacity. Experimental techniques designed to separate these components and examine their interrelations within comparable tasks are outlined. It is shown that a stimulus may be used to increase alertness for processing all external information, to improve selection of particular stimuli, or to do both simultaneously. Development of alertness and selectivity are separable, but may go on together without interference. Moreover, encoding a stimulus may proceed without producing interference with other signals. Thus, the contact between an external stimulus and its representation in memory does not appear to require processing capacity. Limited capacity results are obtained when mental operations, E.g., response selection or rehearsal, must be performed on the encoded information. (45 ref.)