Skip to main content Skip to search
Details
Displaying 1 - 2 of 2
SummaryObjectives To investigate neural representation evoked by acupuncture from human somatosensory cortices, especially from primary (SI) and secondary (SII) somatosensory areas. Design and setting Neuroimaging study – Blood-oxygenation-level-dependent (BOLD) functional MRI was performed during acupuncture on LI4 (n = 12 healthy participants). Sham acupuncture and innocuous tactile stimulation were also applied on the same acupuncture site as control comparisons. Outcome measures Responsive neural substrates were visualized and identified based on both individual and group-level surface activation maps. Results Discrete regions within the precentral gyrus (area 4) and the fundus of the central sulcus (area 3a) were selectively activated during the real acupuncture stimulation. In SII, the activation was extended in a postero-inferior direction to the fundus of the lateral sulcus. Conclusion This specific pattern of acupuncture-related activation indicates that deep tissue stimulation (as seen in area 3a activation) and concurrent processing of sensory stimulation (as seen in activation in SII) may mediate neural responses to manual acupuncture.
Zotero Collections:

<p>Previous functional imaging studies have shown key roles of the dorsal anterior insula (dAI) and anterior midcingulate cortex (aMCC) in empathy for the suffering of others. The current study mapped structural covariance networks of these regions and assessed the relationship between networks and individual differences in empathic responding in 94 females. Individual differences in empathy were assessed through average state measures in response to a video task showing others' suffering, and through questionnaire-based trait measures of empathic concern. Overall, covariance patterns indicated that dAI and aMCC are principal hubs within prefrontal, temporolimbic, and midline structural covariance networks. Importantly, participants with high empathy state ratings showed increased covariance of dAI, but not aMCC, to prefrontal and limbic brain regions. This relationship was specific for empathy and could not be explained by individual differences in negative affect ratings. Regarding questionnaire-based empathic trait measures, we observed a similar, albeit weaker modulation of dAI covariance, confirming the robustness of our findings. Our analysis, thus, provides novel evidence for a specific contribution of frontolimbic structural covariance networks to individual differences in social emotions beyond negative affect.</p>
Zotero Collections: