Skip to main content Skip to search
Displaying 1 - 10 of 10 sources
  • Page
  • of  1
To gain insight into the neurophysiological mechanisms involved in Zen meditation, we evaluated the effects of focused attention (FA) on breathing movements in the lower abdomen (Tanden) in novices. We investigated hemodynamic changes in the prefrontal cortex (PFC), an attention-related brain region, using 24-channel near-infrared spectroscopy during a 20-minute session of FA on Tanden breathing in 15 healthy volunteers. We found that the level of oxygenated hemoglobin in the anterior PFC was significantly increased during FA on Tanden breathing, accompanied by a reduction in feelings of negative mood compared to before the meditation session. Electroencephalography (EEG) revealed increased alpha band activity and decreased theta band activity during and after FA on Tanden breathing. EEG changes were correlated with a significant increase in whole blood serotonin (5-HT) levels. These results suggest that activation of the anterior PFC and 5-HT system may be responsible for the improvement of negative mood and EEG signal changes observed during FA on Tanden breathing.

OBJECTIVE: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation applied in a work environment with healthy employees. METHODS: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N = 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine. RESULTS: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine. CONCLUSIONS: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research.

Brain Respiration (BR)-training is a unique form of breathing exercise that develops potential ability by facilitating brain function. It is recognized as an effective method of improving the scholastic aptitude and emotional stability of children. The present study was designed to investigate the characteristics of the EEG during this training. Spectral analysis was used to examine the relative power in the EEG of 12 children while they practiced BR-training, and these were compared to those of 12 matched controls. BR-trainees showed a lower θ rhythm than the controls before the training session began and lower β[sub 2] power before, during and after the session. In contrast, the BR subjects showed greater relative α[sub 1] power than the controls in the left frontal region during BR-training, which persisted throughout the BR-training schedule. There is evidence that decreased θ and β waves may be correlated with emotional maturation, whilst increased α waves are associated with educational achievement. These findings enhance our understanding of the neurophysiological basis of the effects of BR-training upon emotion and maturation.

Electroencephalographic (EEG) recordings from 19 scalp recording sites were used to differentiate among two posited unique forms of mediation, concentration and mindfulness, and a normal relaxation control condition. Analyzes of all traditional frequency bandwidth data (i.e., delta 1–3 Hz; theta, 4–7 Hz; alpha, 8–12 Hz; beta 1, 13–25 Hz; beta 2, 26–32 Hz) showed strong mean amplitude frequency differences between the two meditation conditions and relaxation over numerous cortical sites. Furthermore, significant differences were obtained between concentration and mindfulness states at all bandwidths. Taken together, our results suggest that concentration and mindfulness “meditations” may be unique forms of consciousness and are not merely degrees of a state of relaxation.

Experienced Qigong meditators who regularly perform the exercises “Thinking of Nothing” and “Qigong” were studied with multichannel EEG source imaging during their meditations. The intracerebral localization of brain electric activity during the two meditation conditions was compared using sLORETA functional EEG tomography. Differences between conditions were assessed using t statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. In the EEG alpha-2 frequency, 125 voxels differed significantly; all were more active during “Qigong” than “Thinking of Nothing,” forming a single cluster in parietal Brodmann areas 5, 7, 31, and 40, all in the right hemisphere. In the EEG beta-1 frequency, 37 voxels differed significantly; all were more active during “Thinking of Nothing” than “Qigong,” forming a single cluster in prefrontal Brodmann areas 6, 8, and 9, all in the left hemisphere. Compared to combined initial–final no-task resting, “Qigong” showed activation in posterior areas whereas “Thinking of Nothing” showed activation in anterior areas. The stronger activity of posterior (right) parietal areas during “Qigong” and anterior (left) prefrontal areas during “Thinking of Nothing” may reflect a predominance of self-reference, attention and input-centered processing in the “Qigong” meditation, and of control-centered processing in the “Thinking of Nothing” meditation.

Long-term Vipassana meditators sat in meditation vs. a control (instructed mind wandering) states for 25 min, electroencephalography (EEG) was recorded and condition order counterbalanced. For the last 4 min, a three-stimulus auditory oddball series was presented during both meditation and control periods through headphones and no task imposed. Time-frequency analysis demonstrated that meditation relative to the control condition evinced decreased evoked delta (2–4 Hz) power to distracter stimuli concomitantly with a greater event-related reduction of late (500–900 ms) alpha-1 (8–10 Hz) activity, which indexed altered dynamics of attentional engagement to distracters. Additionally, standard stimuli were associated with increased early event-related alpha phase synchrony (inter-trial coherence) and evoked theta (4–8 Hz) phase synchrony, suggesting enhanced processing of the habituated standard background stimuli. Finally, during meditation, there was a greater differential early-evoked gamma power to the different stimulus classes. Correlation analysis indicated that this effect stemmed from a meditation state-related increase in early distracter-evoked gamma power and phase synchrony specific to longer-term expert practitioners. The findings suggest that Vipassana meditation evokes a brain state of enhanced perceptual clarity and decreased automated reactivity.

The aim of mindfulness meditation is to develop present-focused, non-judgmental, attention. Therefore, experience in meditation should be associated with less anticipation and negative appraisal of pain. In this study we compared a group of individuals with meditation experience to a control group to test whether any differences in the affective appraisal of pain could be explained by lower anticipatory neural processing. Anticipatory and pain-evoked ERPs and reported pain unpleasantness were recorded in response to laser stimuli of matched subjective intensity between the two groups. ERP data were analysed after source estimation with LORETA. No group effects were found on the laser energies used to induce pain. More experienced meditators perceived the pain as less unpleasant relative to controls, with meditation experience correlating inversely with unpleasantness ratings. ERP source data for anticipation showed that in meditators, lower activity in midcingulate cortex relative to controls was related to the lower unpleasantness ratings, and was predicted by lifetime meditation experience. Meditators also reversed the normal positive correlation between medial prefrontal cortical activity and pain unpleasantness during anticipation. Meditation was also associated with lower activity in S2 and insula during the pain-evoked response, although the experiment could not disambiguate this activity from the preceding anticipation response. Our data is consistent with the hypothesis that meditation reduces the anticipation and negative appraisal of pain, but effects on pain-evoked activity are less clear and may originate from preceding anticipatory activity. Further work is required to directly test the causal relationship between meditation, pain anticipation, and pain experience.

Objective There is a growing scientific interest in mindfulness meditation (MM), yet its underlying neurophysiological mechanism is still uncertain. We investigated whether MM affects self-referential processing, associated with default mode network (DMN), either as short (state) – or long-term (trait) effects. Methods Three levels of MM expertise were compared with controls (n = 12 each) by electroencephalography (EEG). Results DMN deactivation was identified during the transition from resting state to a time production task, as lower gamma (25–45 Hz) power over frontal and midline regions. MM practitioners exhibited a trait lower frontal gamma activity, related to narrative self-reference and DMN activity, as well as producing longer durations, these being negatively correlated with frontal gamma activity. Additionally, we found state increases in posterior gamma power, suggesting increased attention and sensory awareness. MM proficiency did not affect the results. Conclusions Gamma power over frontal midline areas reflects DMN activity. MM practitioners exhibit lower trait frontal gamma activity, as well as a state and trait increases in posterior gamma power, irrespective of practice proficiency. Significance First, the DMN can be studied non-invasively by EEG. Second, MM induces from the early stages of practice neuroplasticity in self-referential and attentional networks.

Brain oscillatory activity is associated with different cognitive processes and plays a critical role in meditation. In this study, we investigated the temporal dynamics of oscillatory changes during Sahaj Samadhi meditation (a concentrative form of meditation that is part of Sudarshan Kriya yoga). EEG was recorded during Sudarshan Kriya yoga meditation for meditators and relaxation for controls. Spectral and coherence analysis was performed for the whole duration as well as specific blocks extracted from the initial, middle, and end portions of Sahaj Samadhi meditation or relaxation. The generation of distinct meditative states of consciousness was marked by distinct changes in spectral powers especially enhanced theta band activity during deep meditation in the frontal areas. Meditators also exhibited increased theta coherence compared to controls. The emergence of the slow frequency waves in the attention-related frontal regions provides strong support to the existing claims of frontal theta in producing meditative states along with trait effects in attentional processing. Interestingly, increased frontal theta activity was accompanied reduced activity (deactivation) in parietal–occipital areas signifying reduction in processing associated with self, space and, time.

Objective: To provide a comprehensive review and evaluation of the psychological and neurophysiological literature pertaining to mindfulness meditation.Methods: A search for papers in English was undertaken using PsycINFO (from 1804 onward), MedLine (from 1966 onward) and the Cochrane Library with the following search terms: Vipassana, Mindfulness, Meditation, Zen, Insight, EEG, ERP, fMRI, neuroimaging and intervention. In addition, retrieved papers and reports known to the authors were also reviewed for additional relevant literature.Results: Mindfulness-based therapeutic interventions appear to be effective in the treatment of depression, anxiety, psychosis, borderline personality disorder and suicidal/self-harm behaviour. Mindfulness meditation per se is effective in reducing substance use and recidivism rates in incarcerated populations but has not been specifically investigated in populations with psychiatric disorders. Electroencephalography research suggests increased alpha, theta and beta activity in frontal and posterior regions, some gamma band effects, with theta activity strongly related to level of experience of meditation; however, these findings have not been consistent. The few neuroimaging studies that have been conducted suggest volumetric and functional change in key brain regions.Conclusions: Preliminary findings from treatment outcome studies provide support for the application of mindfulness-based interventions in the treatment of affective, anxiety and personality disorders. However, direct evidence for the effectiveness of mindfulness meditation per se in the treatment of psychiatric disorders is needed. Current neurophysiological and imaging research findings have identified neural changes in association with meditation and provide a potentially promising avenue for future research.

  • Page
  • of  1