Skip to main content Skip to search
Details
Displaying 26 - 47 of 47

Pages

  • Page
  • of 2
The nature of the affective deficit that characterizes social anhedonia is not well understood. Emotionally evocative visual stimuli were presented to undergraduates identified as anhedonic or normal, based on their scores on the revised Social Anhedonia Scale. The affective stimuli were chosen to elicit positive and negative emotion; a subset of slides were specifically chosen to include social-interpersonal content. In the acoustic startle paradigm, participants were administered startle probes (50-ms 95 dB white noise bursts) while viewing images from the International Affective Picture System. Socially anhedonic individuals did not differ from normally hedonic individuals in terms of their physiological response to the stimuli, regardless of the nature of the content of the stimuli. However, on the self-report measures of trait affectivity, the socially anhedonic individuals reported significantly lower levels of positive affect and higher levels of negative affect. These findings suggest that the affective deficits reported by socially anhedonic individuals are not global in nature.
Zotero Collections:

In children, behavioral inhibition (BI) in response to potential threat predicts the development of anxiety and affective disorders, and primate lesion studies suggest involvement of the orbitofrontal cortex (OFC) in mediating BI. Lesion studies are essential for establishing causality in brain-behavior relationships, but should be interpreted cautiously because the impact of a discrete lesion on a complex neural circuit extends beyond the lesion location. Complementary functional imaging methods assessing how lesions influence other parts of the circuit can aid in precisely understanding how lesions affect behavior. Using this combination of approaches in monkeys, we found that OFC lesions concomitantly alter BI and metabolism in the bed nucleus of stria terminalis (BNST) region and that individual differences in BNST activity predict BI. Thus it appears that an important function of the OFC in response to threat is to modulate the BNST, which may more directly influence the expression of BI.
Zotero Collections:

There is mounting evidence that prefrontal cortex (PFC) is activated during mnemonic operations such as working memory maintenance and also during response-related operations. In the current study, we examine the neural organization of mnemonic and response operations with respect to each other within PFC. Stimulus-evoked and sustained functional MRI activity was recorded during performance of a mental calculation task. The presence or absence of mnemonic and response demands was manipulated in a 2 x 2 factorial design with conditions requiring: (1) memory encoding and maintenance (M+); (2) response selection and execution (R+); (3) encoding, maintenance, and response execution (M+R+); (4) neither mnemonic nor response-related processes (M-R-). The first step of the analyses identified PFC voxels exhibiting differential activity during (M+) vs. (R+) trials. Within these voxels, we then examined activity during multiple phases of (M+R+) trials. Greater stimulus-evoked and sustained activity was observed within the anterior extent of dorsolateral prefrontal cortex (BA 46) during R+ vs. M+ trials. In contrast, greater activity was observed in the posterior extent of dorsolateral PFC during M+ vs. R+ trials. Importantly, both regions were activated during (M+R+) trials. Activity levels during all of these conditions exceeded levels observed during (M-R-) control trials. These results suggest that integrative functions of PFC that allow past information to guide future actions may emerge from communication between discrete subregions supporting mnemonic and response operations.
Zotero Collections:

Examined were electroencephalogram (EEG) asymmetries during the presence of discrete facial signs of emotion among 10-month-old infants who were tested in a standard stranger- and mother-approach paradigm that included a brief separation from mother. Data underscore the usefulness of EEG measures of hemispheric activation in differentiating among certain emotional states. (RH)
Zotero Collections:

<p>This experiment was designed to test whether reading disabled boys differ from matched controls on behavioral measures of interhemispheric transfer time (IHTT). Specifically, we proposed that language-disordered reading disabled children who had deficits in naming would show either faster or slower IHTTs compared with controls. From an initial group of 118 right-handed males, we selected a group of 25 disabled and 25 normal readers, matched on age. All subjects had to obtain a full scale IQ of 90 or above, a PIQ score of 85 or above, and a scaled score of 7 or above on the Block Design Subtest of the WISC-R. After meeting additional criteria for group assignment, manual reaction time (RT) measures of IHTT were obtained in response to simple visual and tactile stimuli during two laboratory testing sessions. Half the trials were conducted with the hands in an uncrossed orientation and half with the hands crossed in order to examine the effects of spatial compatibility on estimates of IHTT. The results revealed no overall group differences in IHTT for any of the conditions. However, correlations between IHTT measures and indices of cognitive performance indicated that faster IHTTs were significantly correlated with poorer performance on measures of reading and language function in the dyslexic group. These data are discussed within the context of a model of interhemispheric transfer deficits in disabled readers.</p>
Zotero Collections:

Working memory (WM) comprises operations whose coordinated action contributes to our ability to maintain focus on goal-relevant information in the presence of distraction. The present study investigated the nature of distraction upon the neural correlates of WM maintenance operations by presenting task-irrelevant distracters during the interval between the memoranda and probes of a delayed-response WM task. The study used a region of interest (ROIs) approach to investigate the role of anterior (e.g., lateral and medial prefrontal cortex--PFC) and posterior (e.g., parietal and fusiform cortices) brain regions that have been previously associated with WM operations. Behavioral results showed that distracters that were confusable with the memorandum impaired WM performance, compared to either the presence of non-confusable distracters or to the absence of distracters. These different levels of distraction led to differences in the regional patterns of delay interval activity measured with event-related functional magnetic resonance imaging (fMRI). In the anterior ROIs, dorsolateral PFC activation was associated with WM encoding and maintenance, and in maintaining a preparatory state, and ventrolateral PFC activation was associated with the inhibition of distraction. In the posterior ROIs, activation of the posterior parietal and fusiform cortices was associated with WM and perceptual processing, respectively. These findings provide novel evidence concerning the neural systems mediating the cognitive and behavioral responses during distraction, and places frontal cortex at the top of the hierarchy of the neural systems responsible for cognitive control.
Zotero Collections:

Theories of knowledge such as feature lists, semantic networks, and localist neural nets typically use a single global symbol to represent a property that occurs in multiple concepts. Thus, a global symbol represents mane across HORSE, PONY, and LION. Alternatively, perceptual theories of knowledge, as well as distributed representational systems, assume that properties take different local forms in different concepts. Thus, different local forms of mane exist for HORSE, PONY, and LION, each capturing the specific form that mane takes in its respective concept. Three experiments used the property verification task to assess whether properties are represented globally or locally (e.g., Does a PONY have mane?). If a single global form represents a property, then verifying it in any concept should increase its accessibility and speed its verification later in any other concept. Verifying mane for PONY should benefit as much from having verified mane for LION earlier as from verifying mane for HORSE. If properties are represented locally, however, verifying a property should only benefit from verifying a similar form earlier. Verifying mane for PONY should only benefit from verifying mane for HORSE, not from verifying mane for LION. Findings from three experiments strongly supported local property representation and ruled out the interpretation that object similarity was responsible (e.g., the greater overall similarity between HORSE and PONY than between LION and PONY). The findings further suggest that property representation and verification are complicated phenomena, grounded in sensory-motor simulations.
Zotero Collections:

Several different models postulate that depression is associated with decreased approach-related behavior. Relatively little has been done to date to specifically investigate this issue. In the present study, a signal-detection analysis was used to examine the response biases of dysphoric and nondysphoric female undergraduates during 3 payoff conditions: neutral, reward, and punishment. As predicted, the dysphoric subjects had a smaller change in bias from the neutral to the reward condition compared with the nondysphoric group. The 2 groups did not differ during the neutral and punishment conditions. These findings are consistent with the hypothesis that the left frontal hypoactivation observed in depression reflects a deficit in approach-related behavior.
Zotero Collections:

We investigate the hypothesis that those subregions of the prefrontal cortex (PFC) found to support proactive interference resolution may also support delay-spanning distractor interference resolution. Ten subjects performed delayed-recognition tasks requiring working memory for faces or shoes during functional MRI scanning. During the 15-sec delay interval, task-irrelevant distractors were presented. These distractors were either all faces or all shoes and were thus either congruent or incongruent with the domain of items in the working memory task. Delayed-recognition performance was slower and less accurate during congruent than during incongruent trials. Our fMRI analyses revealed significant delay interval activity for face and shoe working memory tasks within both dorsal and ventral PFC. However, only ventral PFC activity was modulated by distractor category, with greater activity for congruent than for incongruent trials. Importantly, this congruency effect was only present for correct trials. In addition to PFC, activity within the fusiform face area was investigated. During face distraction, activity was greater for face relative to shoe working memory. As in ventrolateral PFC, this congruency effect was only present for correct trials. These results suggest that the ventrolateral PFC and fusiform face area may work together to support delay-spanning interference resolution.
Zotero Collections:

BACKGROUND: Excessive behavioral inhibition during childhood marks anxious temperament and is a risk factor for the development of anxiety and affective disorders. Studies in nonhuman primates can provide important information related to the expression of this risk factor, since threat-induced freezing in rhesus monkeys is a trait-like characteristic analogous to human behavioral inhibition. The orbitofrontal cortex (OFC) and amygdala are part of a circuit involved in the processing of emotions and associated physiological responses. Earlier work demonstrated involvement of the primate central nucleus of the amygdala (CeA) in mediating anxious temperament. This study assessed the role of the primate OFC in mediating anxious temperament and its involvement in fear responses. METHODS: Twelve adolescent rhesus monkeys were studied (six lesion and six control monkeys). Lesions were targeted at regions of the OFC that are most interconnected with the amygdala. Behavior and physiological parameters were assessed before and after the lesions. RESULTS: The OFC lesions significantly decreased threat-induced freezing and marginally decreased fearful responses to a snake. The lesions also resulted in a leftward shift in frontal brain electrical activity consistent with a reduction in anxiety. The lesions did not significantly decrease hypothalamic-pituitary-adrenal (HPA) activity or cerebrospinal fluid (CSF) concentrations of corticotrophin-releasing factor (CRF). CONCLUSIONS: These findings demonstrate a role for the OFC in mediating anxious temperament and fear-related responses in adolescent primates. Because of the similarities between rhesus monkey threat-induced freezing and childhood behavioral inhibition, these findings are relevant to understanding mechanisms underlying anxious temperament in humans.
Zotero Collections:

Selective attention has been shown to bias sensory processing in favor of relevant stimuli and against irrelevant or distracting stimuli in perceptual tasks. Increasing evidence suggests that selective attention plays an important role during working memory maintenance, possibly by biasing sensory processing in favor of to-be-remembered items. In the current study, we investigated whether selective attention may also support working memory by biasing processing against irrelevant and potentially distracting information. Event-related potentials (ERPs) were recorded while subjects (n = 22) performed a delayed-recognition task for faces and shoes. The delay period was filled with face or shoe distractors. Behavioral performance was impaired when distractors were congruent with the working memory domain (e.g., face distractor during working memory for faces) relative to when distractors were incongruent with the working memory domain (e.g., face distractor during shoe working memory). If attentional biasing against distractor processing is indeed functionally relevant in supporting working memory maintenance, perceptual processing of distractors is predicted to be attenuated when distractors are more behaviorally intrusive relative to when they are nonintrusive. As such, we predicted that perceptual processing of distracting faces, as measured by the face-sensitive N170 ERP component, would be reduced in the context of congruent (face) working memory relative to incongruent (shoe) working memory. The N170 elicited by distracting faces demonstrated reduced amplitude during congruent versus incongruent working memory. These results suggest that perceptual processing of distracting faces may be attenuated due to attentional biasing against sensory processing of distractors that are most behaviorally intrusive during working memory maintenance.
Zotero Collections:

<p>Five studies investigated the cognitive and emotional processes by which self-compassionate people deal with unpleasant life events. In the various studies, participants reported on negative events in their daily lives, responded to hypothetical scenarios, reacted to interpersonal feedback, rated their or others' videotaped performances in an awkward situation, and reflected on negative personal experiences. Results from Study 1 showed that self-compassion predicted emotional and cognitive reactions to negative events in everyday life, and Study 2 found that self-compassion buffered people against negative self-feelings when imagining distressing social events. In Study 3, self-compassion moderated negative emotions after receiving ambivalent feedback, particularly for participants who were low in self-esteem. Study 4 found that low-self-compassionate people undervalued their videotaped performances relative to observers. Study 5 experimentally induced a self-compassionate perspective and found that self-compassion leads people to acknowledge their role in negative events without feeling overwhelmed with negative emotions. In general, these studies suggest that self-compassion attenuates people's reactions to negative events in ways that are distinct from and, in some cases, more beneficial than self-esteem.</p>

The present study was undertaken to determine whether aversiveness contributes to startle potentiation in anticipation of affective pictures above and beyond the effects of emotional arousal. Further, participants high in trait anxious apprehension, which is characterized by worry about the future, were expected to show especially pronounced anticipatory startle responses. Startle blink reflex was measured during warning stimuli that predicted the valence of ensuing aversive/unpleasant, pleasant, or neutral pictures. Startle magnitude was larger in anticipation of aversive than of pleasant pictures and smallest in anticipation of neutral pictures. Enhanced startle potentiation was not found in anxious apprehension subjects. These data suggest that the aversive nature of stimuli contribute to the potentiation of startle above and beyond the effects of emotional arousal, which may be a universal phenomenon not modulated by individual differences.
Zotero Collections:

Despite the prominence of emotional dysfunction in psychopathology, relatively few experiments have explicitly studied emotion regulation in adults. The present study examined one type of emotion regulation: voluntary regulation of short-term emotional responses to unpleasant visual stimuli. In a sample of 48 college students, both eyeblink startle magnitude and corrugator activity were sensitive to experimental manipulation. Instructions to suppress negative emotion led to both smaller startle eyeblinks and decreased corrugator activity. Instructions to enhance negative emotion led to larger startle eyeblinks and increased corrugator activity. Several advantages of this experimental manipulation are discussed, including the use of both a suppress and an enhance emotion condition, independent measurement of initial emotion elicitation and subsequent regulation of that emotion, the use of a completely within-subjects design, and the use of naturalistic emotion regulation strategies.
Zotero Collections:

In the present study, we examined the stability of one measure of emotion, the emotion-modulated acoustic startle response, in an undergraduate sample. Using the acoustic startle paradigm on two different occasions, we measured stability of affective modulation of the startle response during and following the presentation of pictures selected to be of positive, negative, or neutral emotional valence. The two assessments were separated by 4 weeks. Two groups of subjects were compared: one group that viewed the same pictures at each assessment and a second group that viewed different pictures at the second assessment. We found that viewing different pictures at two assessments separated by 4 weeks yielded moderate stability of the emotion modulation of startle magnitude, whereas subjects who viewed the same pictures at both assessments showed poor stability. Furthermore, this difference was due to the stability of responses to high versus low arousal pictures, not to differences in valence.
Zotero Collections:

The information processing capacity of the human mind is limited, as is evidenced by the attentional blink-a deficit in identifying the second of two targets (T1 and T2) presented in close succession. This deficit is thought to result from an overinvestment of limited resources in T1 processing. We previously reported that intensive mental training in a style of meditation aimed at reducing elaborate object processing, reduced brain resource allocation to T1, and improved T2 accuracy [Slagter, H. A., Lutz, A., Greischar, L. L., Francis, A. D., Nieuwenhuis, S., Davis, J., et al. Mental training affects distribution of limited brain resources. PloS Biology, 5, e138, 2007]. Here we report EEG spectral analyses to examine the possibility that this reduction in elaborate T1 processing rendered the system more available to process new target information, as indexed by T2-locked phase variability. Intensive mental training was associated with decreased cross-trial variability in the phase of oscillatory theta activity after successfully detected T2s, in particular, for those individuals who showed the greatest reduction in brain resource allocation to T1. These data implicate theta phase locking in conscious target perception, and suggest that after mental training the cognitive system is more rapidly available to process new target information. Mental training was not associated with changes in the amplitude of T2-induced responses or oscillatory activity before task onset. In combination, these findings illustrate the usefulness of systematic mental training in the study of the human mind by revealing the neural mechanisms that enable the brain to successfully represent target information.
Zotero Collections:

Spatial working memory is a cognitive brain mechanism that enables the temporary maintenance and manipulation of spatial information. Recent neuroimaging and behavioral studies have led to the proposal that directed spatial attention is the mechanism by which location information is maintained in spatial working memory. Yet it is unclear whether attentional involvement is required throughout the period of active maintenance or is only invoked during discrete task-phases such as mnemonic encoding. In the current study, we aimed to track the time-course of attentional involvement during spatial working memory by recording event-related brain potentials (ERPs) from healthy volunteers. In Experiment 1, subjects performed a delayed-recognition task. Each trial began with the presentation of a brief stimulus (S1) that indicated the relevant location that subjects were to maintain in working memory. A 4.8-5.3 sec delay interval followed during which a single task-irrelevant probe was presented. The delay interval concluded with a test item (S2) to which subjects made a response indicating whether the S2-location was the same as the S1-memory location. To determine if attention was differentially engaged during discrete phases of the trial, task-irrelevant probes were presented early (400-800 msec following S1-offset) or late (2600-3000 msec following S1-offset) during the delay interval. Sensory-evoked ERPs (P1 and N1) elicited by these irrelevant probes showed attention-like modulations with greater amplitude responses for probes occurring at the S1-memory locations in comparison to probes presented at other locations. This pattern was obtained for both early- and late-delay probes. Probe-evoked activity during delayed-recognition trials was similar to activity observed when spatial attention was explicitly focused on a location in visual space (Experiment 2). These results are consistent with a model of spatial working memory in which perceptual level selective attention is utilized throughout the entire period of active maintenance to keep relevant spatial information in mind.
Zotero Collections:

Planned and reflexive behaviors often occur in the presence of emotional stimuli and within the context of an individual's acute emotional state. Therefore, determining the manner in which emotion and attention interact is an important step toward understanding how we function in the real world. Participants in the current investigation viewed centrally displayed, task-irrelevant, face distractors (angry, neutral, happy) while performing a lateralized go/no-go continuous performance task. Lateralized go targets and no-go lures that did not spatially overlap with the faces were employed to differentially probe processing in the left (LH) and right (RH) cerebral hemispheres. There was a significant interaction between expression and hemisphere, with an overall pattern such that angry distractors were associated with relatively more RH inhibitory errors than neutral or happy distractors and happy distractors with relatively more LH inhibitory errors than angry or neutral distractors. Simple effects analyses confirmed that angry faces differentially interfered with RH relative to LH inhibition and with inhibition in the RH relative to happy faces. A significant three-way interaction further revealed that state anxiety moderated relations between emotional expression and hemisphere. Under conditions of low cognitive load, more intense anxiety was associated with relatively greater RH than LH impairment in the presence of both happy and threatening distractors. By contrast, under high load, only angry distractors produced greater RH than LH interference as a function of anxiety.
Zotero Collections:

OBJECTIVES: Affective neuroscience research that investigates core symptoms of pediatric bipolar disorder (PBD) may be effective in differentiating PBD phenotypes. The current study used affect-modulated startle to examine potential differences in reactivity to emotional stimuli (reward and punishment) in narrow and broad phenotype PBD and controls. METHODS: Thirty children meeting DSM-IV bipolar disorder criteria (i.e. narrow phenotype PBD with defined manic episodes with elevated/expansive mood), 19 children meeting criteria for severe mood dysregulation (i.e. broad phenotype with chronic irritability, hyper-reactivity, and hyperarousal), and 19 controls completed a lottery startle paradigm involving reward (money) and punishment (loud noise). Startle probes were presented during anticipation of the emotional stimulus, immediately following the presentation of the stimulus, or during return to baseline following the stimulus. RESULTS: By self-report, patients and controls found the putative punishment to be preferable to the neutral condition. In the reward condition, patient samples reported greater arousal than did controls, but no between-group differences were found on the magnitude of startle response during the reward, punishment, or neutral conditions. CONCLUSIONS: The failure to find differences in affect-modulated startle between control children and those with narrow or broad PBD phenotypes speaks to the methodological challenges associated with studying reward mechanisms in PBD. Alternative paradigms that focus on different aspects of reward mechanisms are discussed.
Zotero Collections:

Four experiments testing right-handed adult males examined interhemispheric transfer time (IHTT) estimation with visual evoked potentials (EPs) elicited in response to hemiretinal presentations of checkerboard-flash stimuli. Experiment 1 was a study of the relation between reaction time (RT) and EP measures of IHTT. EP measures provided more valid estimates than RT measures because more subjects showed IHTT in the direction of anatomical prediction. Experiment 2 showed that EPs derived from lateral occipital sites provided more valid and longer estimates of IHTT compared with EPs from medial occipital sites. Experiment 3 showed no difference between random versus blocked hemiretinal stimuli. Experiment 4 showed that IHTT derived with a linked-ears reference provided more valid estimates than IHTT derived with a mid-frontal reference and that small changes in stimulus eccentricity did not influence IHTT. The findings of these experiments indicate that noninvasive estimates of visual IHTT can be obtained in humans.
Zotero Collections:

Research on temporal-order judgments, reference frames, discrimination tasks, and links to oculomotor control suggest important differences between inhibition of return (IOR) and attentional costs and benefits. Yet, it is generally assumed that IOR is an attentional effect even though there is little supporting evidence. The authors evaluated this assumption by examining how several factors that are known to influence attentional costs and benefits affect the magnitude of IOR: target modality, target intensity, and response mode. Results similar to those previously reported for attention were observed: IOR was greater for visual than for auditory targets, showed an inverse relationship with target intensity, and was equivalent for manual and saccadic responses. Important parallels between IOR and attentional costs and benefits are indicated, suggesting that, like attention, IOR may in part affect sensory-perceptual processes.
Zotero Collections:

Dynamic adjustments in cognitive control are well documented in conflict tasks, wherein competition from irrelevant stimulus attributes intensifies selection demands and leads to subsequent performance benefits. The current study investigated whether mnemonic demands, in a working memory (WM) task, can drive similar online control modifications. Demand levels (high vs. low) of WM maintenance (memory load of 2 items vs. 1 item) and delay-spanning distractor interference (confusable vs. not confusable with memoranda) were manipulated using a factorial design during a WM delayed-recognition task. Performance was best subsequent to trials in which both maintenance and distractor interference demands were high, followed by trials with high demand in either of these 2 control domains, and worst following trials with low demand in both domains. These results suggest that dynamic adjustments in cognitive control are not triggered exclusively by conflict-specific contexts but are also triggered by WM demands, revealing a putative mechanism by which this system configures itself for successful task performance.
Zotero Collections:

Pages

  • Page
  • of 2