Skip to main content Skip to search
Details
Displaying 101 - 125 of 144

Pages

  • Page
  • of 6
A review of behavioral and neurobiological data on mood and mood regulation as they pertain to an understanding of mood disorders is presented. Four approaches are considered: 1) behavioral and cognitive; 2) neurobiological; 3) computational; and 4) developmental. Within each of these four sections, we summarize the current status of the field and present our vision for the future, including particular challenges and opportunities. We conclude with a series of specific recommendations for National Institute of Mental Health priorities. Recommendations are presented for the behavioral domain, the neural domain, the domain of behavioral-neural interaction, for training, and for dissemination. It is in the domain of behavioral-neural interaction, in particular, that new research is required that brings together traditions that have developed relatively independently. Training interdisciplinary clinical scientists who meaningfully draw upon both behavioral and neuroscientific literatures and methods is critically required for the realization of these goals.
Zotero Collections:

Anxiety is a debilitating symptom of many psychiatric disorders including generalized anxiety disorder, mood disorders, schizophrenia, and autism. Anxiety involves changes in both central and peripheral biology, yet extant functional imaging studies have focused exclusively on the brain. Here we show, using functional brain and cardiac imaging in sequential brain and cardiac magnetic resonance imaging (MRI) sessions in response to cues that predict either threat (a possible shock) or safety (no possibility of shock), that MR signal change in the amygdala and the prefrontal and insula cortices predicts cardiac contractility to the threat of shock. Participants with greater MR signal change in these regions show increased cardiac contractility to the threat versus safety condition, a measure of the sympathetic nervous system contribution to the myocardium. These findings demonstrate robust neural-cardiac coupling during induced anxiety and indicate that individuals with greater activation in brain regions identified with aversive emotion show larger magnitude cardiac contractility increases to threat.
Zotero Collections:

Children with an anxious temperament (AT) are at risk for developing psychiatric disorders along the internalizing spectrum, including anxiety and depression. Like these disorders, AT is a multidimensional phenotype and children with extreme anxiety show varying mixtures of physiological, behavioral, and other symptoms. Using a well-validated juvenile monkey model of AT, we addressed the degree to which this phenotypic heterogeneity reflects fundamental differences or similarities in the underlying neurobiology. The rhesus macaque is optimal for studying AT because children and young monkeys express the anxious phenotype in similar ways and have similar neurobiology. Fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET) in 238 freely behaving monkeys identified brain regions where metabolism predicted variation in three dimensions of the AT phenotype: hypothalamic-pituitary-adrenal (HPA) activity, freezing behavior, and expressive vocalizations. We distinguished brain regions that predicted all three dimensions of the phenotype from those that selectively predicted a single dimension. Elevated activity in the central nucleus of the amygdala and the anterior hippocampus was consistently found across individuals with different presentations of AT. In contrast, elevated activity in the lateral anterior hippocampus was selective to individuals with high levels of HPA activity, and decreased activity in the motor cortex (M1) was selective to those with high levels of freezing behavior. Furthermore, activity in these phenotype-selective regions mediated relations between amygdala metabolism and different expressions of anxiety. These findings provide a framework for understanding the mechanisms that lead to heterogeneity in the clinical presentation of internalizing disorders and set the stage for developing improved interventions.
Zotero Collections:

OBJECTIVE: The purpose of this study was to use functional magnetic resonance imaging (fMRI) to probe the neural circuitry associated with reactivity to negative and positive affective stimuli in patients with major depressive disorder before treatment and after 2 and 8 weeks of treatment with venlafaxine. Relations between baseline neural activation and response to treatment were also evaluated. METHOD: Patients with major depressive disorder (N=12) and healthy comparison subjects (N=5) were scanned on three occasions, during which trials of alternating blocks of affective and neutral pictorial visual stimuli were presented. Symptoms were evaluated at each testing occasion, and both groups completed self-report measures of mood. Statistical parametric mapping was used to examine the fMRI data with a focus on the group-by-time interactions. RESULTS: Patients showed a significant reduction in depressive symptoms with treatment. Group-by-time interactions in response to the negative versus neutral stimuli were found in the left insular cortex and the left anterior cingulate. At baseline, both groups showed bilateral activation in the visual cortices, lateral prefrontal cortex, and amygdala in response to the negative versus neutral stimuli, with patients showing greater activation in the visual cortex and less activation in the left lateral prefrontal cortex. Patients with greater relative anterior cingulate activation at baseline in response to the negative versus neutral stimuli showed the most robust treatment response. CONCLUSIONS: The findings underscore the importance of the neural circuitry activated by negative affect in depression and indicate that components of this circuitry can be changed within 2 weeks of treatment with antidepressant medication.
Zotero Collections:

<p>Ironically, in spite of the label "affective disorders", research on affective disorders has little to say about just what is disordered about emotion in these illnesses. One major purpose of this Special Issue is to begin to raise this question as a legitimate domain of inquiry in studies of emotion and psychopathology. Historically, the literature on emotion in normal subjects has proceeded almost entirely independently of studies of emotion-related psychopathology. And, studies on psychopathology make virtually no reference to basic research on emotion in normals. Major advances have occurred in our understanding of the neural substrates of these affective processes. Their application to the study of disordered emotion in affective and anxiety disorders is comparatively recent. A goal of this Special Issue is to foster increased integration between research on the neural mechanisms underlying normal emotion and disordered emotion in depression and anxiety-related illnesses. It features exemplars of the best research at many levels, from animal studies of the detailed circuitry subserving fear and anxiety, to human studies of cognitive abnormalities in subjects with affective and anxiety disorders. It also highlights a myriad array of methods for making inferences about affective processes, ranging from the biological to the behavioral, and from the molecular to the molar. A central concept that figures prominently in this collection of articles is the importance of individual differences in different components of affective processes. The study of the brain circuitry that underlies such differences in affective style offers great promise in providing a biologically plausible way of parsing the affect domain and developing a theoretically compelling taxonomy of mechanisms that give rise to vulnerability to affective and anxiety disorders.</p>
Zotero Collections:

In children, behavioral inhibition (BI) in response to potential threat predicts the development of anxiety and affective disorders, and primate lesion studies suggest involvement of the orbitofrontal cortex (OFC) in mediating BI. Lesion studies are essential for establishing causality in brain-behavior relationships, but should be interpreted cautiously because the impact of a discrete lesion on a complex neural circuit extends beyond the lesion location. Complementary functional imaging methods assessing how lesions influence other parts of the circuit can aid in precisely understanding how lesions affect behavior. Using this combination of approaches in monkeys, we found that OFC lesions concomitantly alter BI and metabolism in the bed nucleus of stria terminalis (BNST) region and that individual differences in BNST activity predict BI. Thus it appears that an important function of the OFC in response to threat is to modulate the BNST, which may more directly influence the expression of BI.
Zotero Collections:

Davidson and Schwartz (1) have proposed a psychobiological analysis of anxiety that emphasizes the patterning of multiple processes in the generation and self-regulation of this state. The present article specifically reviews recent research on cognitive and somatic components of anxiety. A dual component scale which separately assesses cognitive and somatic trait anxiety is described and applied to the study of the differential effects of a somatic (physical exercise) and a cognitive (meditation) relaxation procedure. A total of 77 subjects was employed; 44 regularly practiced physical exercise and 33 regularly practiced meditation for comparable periods of time. As predicted, subjects practicing physical exercise reported relatively less somatic and more cognitive anxiety than meditators. These data suggest that specific subcomponents of anxiety may be differentially associated with relaxation techniques engaging primarily cognitive versus somatic subsystems. It is proposed that relaxation consists of (1) a generalized reduction to multiple physiological systems (termed the relaxation response by Benson) and (2) a more specific pattern of changes superimposed upon this general reduction, which is elicited by the particular techniques employed. The data from this retrospective study need to be followed up by prospective studies to establish the precise mechanisms for these effects.
Zotero Collections:

Children with a cancer diagnosis experience symptom distress, including anxiety, because of the disease and its treatment. Parents experience stress and anxiety because of the uncertainty of the disease as well as the suffering of their children. Yoga is a complementary intervention that has physiological and psychological benefits in healthy children and healthy and chronically ill adults. On an inpatient hematology/oncology unit, 11 children aged 6 to 12 years, 5 adolescents aged 13 to 18 years, and 33 parents participated in a single yoga session tailored to the needs and abilities of the patients and parents. Sense of well-being pre- and postclass was measured with the Spielberger State Anxiety Scale. Children had normal anxiety scores preclass that did not change. Adolescents and parents experienced significant decreases in anxiety scores, and all cohorts gave positive feedback about the experience. The authors conclude that yoga is a feasible intervention for this population and is beneficial to adolescents and parents.
Zotero Tags:
Zotero Collections:

Neuroimage phenotyping for psychiatric and neurological disorders is performed using voxelwise analyses also known as voxel based analyses or morphometry (VBM). A typical voxelwise analysis treats measurements at each voxel (e.g., fractional anisotropy, gray matter probability) as outcome measures to study the effects of possible explanatory variables (e.g., age, group) in a linear regression setting. Furthermore, each voxel is treated independently until the stage of correction for multiple comparisons. Recently, multi-voxel pattern analyses (MVPA), such as classification, have arisen as an alternative to VBM. The main advantage of MVPA over VBM is that the former employ multivariate methods which can account for interactions among voxels in identifying significant patterns. They also provide ways for computer-aided diagnosis and prognosis at individual subject level. However, compared to VBM, the results of MVPA are often more difficult to interpret and prone to arbitrary conclusions. In this paper, first we use penalized likelihood modeling to provide a unified framework for understanding both VBM and MVPA. We then utilize statistical learning theory to provide practical methods for interpreting the results of MVPA beyond commonly used performance metrics, such as leave-one-out-cross validation accuracy and area under the receiver operating characteristic (ROC) curve. Additionally, we demonstrate that there are challenges in MVPA when trying to obtain image phenotyping information in the form of statistical parametric maps (SPMs), which are commonly obtained from VBM, and provide a bootstrap strategy as a potential solution for generating SPMs using MVPA. This technique also allows us to maximize the use of available training data. We illustrate the empirical performance of the proposed framework using two different neuroimaging studies that pose different levels of challenge for classification using MVPA.
Zotero Collections:

OBJECTIVES: To examine whether mindfulness meditation (MM) was associated with changes in objectively measured polysomnographic (PSG) sleep profiles and to relate changes in PSG sleep to subjectively reported changes in sleep and depression within the context of a randomized controlled trial. Previous studies have indicated that mindfulness and other forms of meditation training are associated with improvements in sleep quality. However, none of these studies used objective PSG sleep recordings within longitudinal randomized controlled trials of naïve subjects. METHODS: Twenty-six individuals with partially remitted depression were randomized into an 8-week Mindfulness-Based Cognitive Therapy (MBCT) course or a waitlist control condition. Pre-post measurements included PSG sleep studies and subjectively reported sleep and depression symptoms. RESULTS: According to PSG sleep, MM practice was associated with several indices of increased cortical arousal, including more awakenings and stage 1 sleep and less slow-wave sleep relative to controls, in proportion to amount of MM practice. According to sleep diaries, subjectively reported sleep improved post MBCT but not above and beyond controls. Beck Depression Inventory scores decreased more in the MBCT group than controls. Improvements in depression were associated with increased subjective sleep continuity and increased PSG arousal. CONCLUSIONS: MM is associated with increases in objectively measured arousal during sleep with simultaneous improvements in subjectively reported sleep quality and mood disturbance. This pattern is similar to the profiles of positive responders to common antidepressant medications.
Zotero Collections:

Individuals with fragile X syndrome (FXS) commonly display characteristics of social anxiety, including gaze aversion, increased time to initiate social interaction, and difficulty forming meaningful peer relationships. While neural correlates of face processing, an important component of social interaction, are altered in FXS, studies have not examined whether social anxiety in this population is related to higher cognitive processes, such as memory. This study aimed to determine whether the neural circuitry involved in face encoding was disrupted in individuals with FXS, and whether brain activity during face encoding was related to levels of social anxiety. A group of 11 individuals with FXS (5 M) and 11 age- and gender-matched control participants underwent fMRI scanning while performing a face encoding task with online eye-tracking. Results indicate that compared to the control group, individuals with FXS exhibited decreased activation of prefrontal regions associated with complex social cognition, including the medial and superior frontal cortex, during successful face encoding. Further, the FXS and control groups showed significantly different relationships between measures of social anxiety (including gaze-fixation) and brain activity during face encoding. These data indicate that social anxiety in FXS may be related to the inability to successfully recruit higher level social cognition regions during the initial phases of memory formation.
Zotero Collections:

Temperamentally anxious individuals can be identified in childhood and are at risk to develop anxiety and depressive disorders. In addition, these individuals tend to have extreme asymmetric right prefrontal brain activity. Although common and clinically important, little is known about the pathophysiology of anxious temperament. Regardless, indirect evidence from rodent studies and difficult to interpret primate studies is used to support the hypothesis that the amygdala plays a central role. In previous studies using rhesus monkeys, we characterized an anxious temperament endophenotype that is associated with excessive anxiety and fear-related responses and increased electrical activity in right frontal brain regions. To examine the role of the amygdala in mediating this endophenotype and other fearful responses, we prepared monkeys with selective fiber sparing ibotenic acid lesions of the amygdala. Unconditioned trait-like anxiety-fear responses remained intact in monkeys with >95% bilateral amygdala destruction. In addition, the lesions did not affect EEG frontal asymmetry. However, acute unconditioned fear responses, such as those elicited by exposure to a snake and to an unfamiliar threatening conspecific were blunted in monkeys with >70% lesions. These findings demonstrate that the primate amygdala is involved in mediating some acute unconditioned fear responses but challenge the notion that the amygdala is the key structure underlying the dispositional behavioral and physiological characteristics of anxious temperament.
Zotero Collections:

<p>Virtually all developmental neuropsychiatric disorders involve some dysfunction or dysregulation of emotion. Moreover, many psychiatric disorders with adult onset have early subclinical manifestations in children. This essay selectively reviews the literature on the neuroimaging of affect and disorders of affect in children. Some critical definitional and conceptual issues are first addressed, including the distinctions between the perception and production of emotion and between emotional states and traits. Developmental changes in morphometric measures of brain structure are then discussed and the implications of such findings for studies of functional brain activity are considered. Data on functional neuroimaging and childhood depression are then reviewed. While the extant data in this area are meager, they are consistent with studies in adults that have observed decreased left-sided anterolateral prefrontal cortex activation in depression. Studies in children on the recognition of emotion and affective intent in faces using functional magnetic resonance imaging are then reviewed. These findings indicate that the amygdala plays an important role in such affective face processing in children, similar to the patterns of activation observed in adults. Moreover, one study has reported abnormalities in amygdala activation during a task requiring the judgment of affective intent from the eye region of the face in subjects with autism. Some of the methodological complexities of developmental research in this area are discussed, and directions for future research are suggested.</p>
Zotero Collections:

Mindfulness-based cognitive therapy for children (MBCT-C) is a manualized group psychotherapy for children ages 9–13 years old, which was developed specifically to increase social-emotional resiliency through the enhancement of mindful attention. Program development is described along with results of the initial randomized controlled trial. We tested the hypotheses that children randomized to participate in MBCT-C would show greater reductions in (a) attention problems, (b) anxiety symptoms, and (c) behavior problems than wait-listed age and gender-matched controls. Participants were boys and girls aged 9–13 (N = 25), mostly from low-income, inner-city households. Twenty-one of 25 children were ethnic minorities. A randomized cross-lagged design provided a wait-listed control group, a second trial of MBCT-C, and a 3-month follow-up of children who completed the first trial. Measures included the Child Behavior Checklist, State-Trait Anxiety Inventory for Children, and Multidimensional Anxiety Scale for Children. Participants who completed the program showed fewer attention problems than wait-listed controls and those improvements were maintained at three months following the intervention [F (1, 1, 18) = 5.965, p = .025, Cohen’s d = .42]. A strong relationship was found between attention problems and behavior problems (r = .678, p < .01). Reductions in attention problems accounted for 46% of the variance of changes in behavior problems, although attention changes proved to be a non-significant mediator of behavior problems (p = .053). Significant reductions in anxiety symptoms and behavior problems were found for those children who reported clinically elevated levels of anxiety at pretest (n = 6). Results show that MBCT-C is a promising intervention for attention and behavior problems, and may reduce childhood anxiety symptoms.
Zotero Collections:

BACKGROUND: Anhedonia, a reduced ability to experience pleasure, is a chief symptom of major depressive disorder and is related to reduced frontostriatal connectivity when attempting to upregulate positive emotion. The present study examined another facet of positive emotion regulation associated with anhedonia-namely, the downregulation of positive affect-and its relation to prefrontal cortex (PFC) activity. METHODS: Neuroimaging data were collected from 27 individuals meeting criteria for major depressive disorder as they attempted to suppress positive emotion during a positive emotion regulation task. Their PFC activation pattern was compared with the PFC activation pattern exhibited by 19 healthy control subjects during the same task. Anhedonia scores were collected at three time points: at baseline (time 1), 8 weeks after time 1 (i.e., time 2), and 6 months after time 1 (i.e., time 3). Prefrontal cortex activity at time 1 was used to predict change in anhedonia over time. Analyses were conducted utilizing hierarchical linear modeling software. RESULTS: Depressed individuals who could not inhibit positive emotion-evinced by reduced right ventrolateral prefrontal cortex activity during attempts to dampen their experience of positive emotion in response to positive visual stimuli-exhibited a steeper anhedonia reduction slope between baseline and 8 weeks of treatment with antidepressant medication (p < .05). Control subjects showed a similar trend between baseline and time 3. CONCLUSIONS: To reduce anhedonia, it may be necessary to teach individuals how to counteract the functioning of an overactive pleasure-dampening prefrontal inhibitory system.
Zotero Collections:

Baseline resting electroencephalogram (EEG) activity was recorded from 6 normothymic depressives and 8 controls using three different reference montages. Power in all frequency bands was extracted by Fourier transformation. Significant Group X Region X Hemisphere interactions were found consistently for alpha band power only. Previously depressed subjects had less left-sided anterior and less right-sided posterior activation (i.e., more alpha activity) than did never depressed subjects. Previously depressed subjects had no history of pharmacological treatment and did not differ from controls in emotional state at the time of testing. The pattern of anterior and posterior asymmetry in the previously depressed subjects is similar to that found in acutely depressed subjects and suggests that this may be a state-independent marker for depression.
Zotero Collections:

Electroencephalogram (EEG) alpha power has been demonstrated to be inversely related to mental activity and has subsequently been used as an indirect measure of brain activation. The thalamus has been proposed as an important site for modulation of rhythmic alpha activity. Studies in animals have suggested that cortical alpha rhythms are correlated with alpha rhythms in the thalamus. However, little empirical evidence exists for this relation in humans. In the current study, resting EEG and a fluorodeoxyglucose positron emission tomography scan were measured during the same experimental session. Over a 30-min period, average EEG alpha power across 28 electrodes from 27 participants was robustly inversely correlated with glucose metabolic activity in the thalamus. These data provide the first evidence for a relation between alpha EEG power and thalamic activity in humans.
Zotero Collections:

OBJECTIVE Deficits in positive affect and their neural bases have been associated with major depression. However, whether reductions in positive affect result solely from an overall reduction in nucleus accumbens activity and fronto-striatal connectivity or the additional inability to sustain engagement of this network over time is unknown. The authors sought to determine whether treatment-induced changes in the ability to sustain nucleus accumbens activity and fronto-striatal connectivity during the regulation of positive affect are associated with gains in positive affect. METHOD Using fMRI, the authors assessed the ability to sustain activity in reward-related networks when attempting to increase positive emotion during performance of an emotion regulation paradigm in 21 depressed patients before and after 2 months of antidepressant treatment. Over the same interval, 14 healthy comparison subjects underwent scanning as well. RESULTS After 2 months of treatment, self-reported positive affect increased. The patients who demonstrated the largest increases in sustained nucleus accumbens activity over the 2 months were those who demonstrated the largest increases in positive affect. In addition, the patients who demonstrated the largest increases in sustained fronto-striatal connectivity were also those who demonstrated the largest increases in positive affect when controlling for negative affect. None of these associations were observed in healthy comparison subjects. CONCLUSIONS Treatment-induced change in the sustained engagement of fronto-striatal circuitry tracks the experience of positive emotion in daily life. Studies examining reduced positive affect in a variety of psychiatric disorders might benefit from examining the temporal dynamics of brain activity when attempting to understand changes in daily positive affect.
Zotero Collections:

<p>OBJECTIVES: The study objectives were to develop and objectively assess the therapeutic effect of a novel movement-based complementary and alternative medicine approach for children with an autism-spectrum disorder (ASD). DESIGN: A within-subject analysis comparing pre- to post-treatment scores on two standard measures of childhood behavioral problems was used. SETTINGS AND LOCATION: The intervention and data analysis occurred at a tertiary care, medical school teaching hospital. SUBJECTS: Twenty-four (24) children aged 3-16 years with a diagnosis of an ASD comprised the study group. INTERVENTION: The efficacy of an 8-week multimodal yoga, dance, and music therapy program based on the relaxation response (RR) was developed and examined. OUTCOME MEASURES: The study outcome was measured using The Behavioral Assessment System for Children, Second Edition (BASC-2) and the Aberrant Behavioral Checklist (ABC). RESULTS: Robust changes were found on the BASC-2, primarily for 5-12-year-old children. Unexpectedly, the post-treatment scores on the Atypicality scale of the BASC-2, which measures some of the core features of autism, changed significantly (p=0.003). CONCLUSIONS: A movement-based, modified RR program, involving yoga and dance, showed efficacy in treating behavioral and some core features of autism, particularly for latency-age children.</p>
Zotero Collections:

Depression has been associated with dysfunctional executive functions and abnormal activity within the anterior cingulate cortex (ACC), a region critically involved in action regulation. Prior research invites the possibility that executive deficits in depression may arise from abnormal responses to negative feedback or errors, but the underlying neural substrates remain unknown. We hypothesized that abnormal reactions to error would be associated with dysfunctional rostral ACC activity, a region previously implicated in error detection and evaluation of the emotional significance of events. To test this hypothesis, subjects with low and high Beck Depression Inventory (BDI) scores performed an Eriksen Flanker task. To assess whether tonic activity within the rostral ACC predicted post-error adjustments, 128-channel resting EEG data were collected before the task and analyzed with low-resolution electromagnetic tomography (LORETA) using a region-of-interest approach. High BDI subjects were uniquely characterized by significantly lower accuracy after incorrect than correct trials. Mirroring the behavioral findings, high BDI subjects had significantly reduced pretask gamma (36.5-44 Hz) current density within the affective (rostral; BA24, BA25, BA32) but not cognitive (dorsal; BA24', BA32') ACC subdivision. For low, but not high, BDI subjects pretask gamma within the affective ACC subdivision predicted post-error adjustments even after controlling for activity within the cognitive ACC subdivision. Abnormal responses to errors may thus arise due to lower activity within regions subserving affective and/or motivational responses to salient cues. Because rostral ACC regions have been implicated in treatment response in depression, our findings provide initial insight into putative mechanisms fostering treatment response.
Zotero Collections:

Several different models postulate that depression is associated with decreased approach-related behavior. Relatively little has been done to date to specifically investigate this issue. In the present study, a signal-detection analysis was used to examine the response biases of dysphoric and nondysphoric female undergraduates during 3 payoff conditions: neutral, reward, and punishment. As predicted, the dysphoric subjects had a smaller change in bias from the neutral to the reward condition compared with the nondysphoric group. The 2 groups did not differ during the neutral and punishment conditions. These findings are consistent with the hypothesis that the left frontal hypoactivation observed in depression reflects a deficit in approach-related behavior.
Zotero Collections:

Numerous studies demonstrate that the rhesus monkey is an excellent species with which to investigate mechanisms underlying human emotion and psychopathology. To examine the role of the central nucleus of the amygdala (CeA) in mediating the behavioral and physiological responses associated with fear and anxiety, we used rhesus monkeys to assess the effects of excitotoxic lesions of the CeA. Behavioral and physiological responses of nine monkeys with bilateral CeA destruction (ranging from 46 to 98%) were compared with five animals with asymmetric lesions (42-86.5% destruction on the most affected side) and with 16 unoperated controls. Results suggest that similar to rodent species, the primate CeA plays a role in mediating fear- and anxiety-related behavioral and endocrine responses. Compared with controls and the asymmetric-lesion group, bilaterally lesioned monkeys displayed significantly less fear-related behavior when exposed to a snake and less freezing behavior when confronted by a human intruder. In addition, bilaterally lesioned monkeys had decreased levels of CSF corticotrophin-releasing factor (CRF), and both lesioned groups had decreased plasma ACTH concentrations. In contrast to these findings, patterns of asymmetric frontal brain electrical activity, as assessed by regional scalp EEG, did not significantly differ between control and lesioned monkeys. These findings suggest that in primates, the CeA is involved in mediating fear- and anxiety-related behavioral and pituitary-adrenal responses as well as in modulating brain CRF activity.
Zotero Collections:

BACKGROUND: Excessive behavioral inhibition during childhood marks anxious temperament and is a risk factor for the development of anxiety and affective disorders. Studies in nonhuman primates can provide important information related to the expression of this risk factor, since threat-induced freezing in rhesus monkeys is a trait-like characteristic analogous to human behavioral inhibition. The orbitofrontal cortex (OFC) and amygdala are part of a circuit involved in the processing of emotions and associated physiological responses. Earlier work demonstrated involvement of the primate central nucleus of the amygdala (CeA) in mediating anxious temperament. This study assessed the role of the primate OFC in mediating anxious temperament and its involvement in fear responses. METHODS: Twelve adolescent rhesus monkeys were studied (six lesion and six control monkeys). Lesions were targeted at regions of the OFC that are most interconnected with the amygdala. Behavior and physiological parameters were assessed before and after the lesions. RESULTS: The OFC lesions significantly decreased threat-induced freezing and marginally decreased fearful responses to a snake. The lesions also resulted in a leftward shift in frontal brain electrical activity consistent with a reduction in anxiety. The lesions did not significantly decrease hypothalamic-pituitary-adrenal (HPA) activity or cerebrospinal fluid (CSF) concentrations of corticotrophin-releasing factor (CRF). CONCLUSIONS: These findings demonstrate a role for the OFC in mediating anxious temperament and fear-related responses in adolescent primates. Because of the similarities between rhesus monkey threat-induced freezing and childhood behavioral inhibition, these findings are relevant to understanding mechanisms underlying anxious temperament in humans.
Zotero Collections:

Pages

  • Page
  • of 6