Skip to main content Skip to search
Displaying 1 - 13 of 13
Background Early life stress (ELS) can compromise development, with higher amounts of adversity linked to behavioral problems. To understand this linkage, a growing body of research has examined two brain regions involved with socioemotional functioning—amygdala and hippocampus. Yet empirical studies have reported increases, decreases, and no differences within human and nonhuman animal samples exposed to different forms of ELS. This divergence in findings may stem from methodological factors, nonlinear effects of ELS, or both. Methods We completed rigorous hand-tracing of the amygdala and hippocampus in three samples of children who experienced different forms of ELS (i.e., physical abuse, early neglect, or low socioeconomic status). Interviews were also conducted with children and their parents or guardians to collect data about cumulative life stress. The same data were also collected in a fourth sample of comparison children who had not experienced any of these forms of ELS. Results Smaller amygdala volumes were found for children exposed to these different forms of ELS. Smaller hippocampal volumes were also noted for children who were physically abused or from low socioeconomic status households. Smaller amygdala and hippocampal volumes were also associated with greater cumulative stress exposure and behavioral problems. Hippocampal volumes partially mediated the relationship between ELS and greater behavioral problems. Conclusions This study suggests ELS may shape the development of brain areas involved with emotion processing and regulation in similar ways. Differences in the amygdala and hippocampus may be a shared diathesis for later negative outcomes related to ELS.
Zotero Collections:

Metacognition refers to any knowledge or cognitive process that monitors or controls cognition. We highlight similarities between metacognitive and executive control functions, and ask how these processes might be implemented in the human brain. A review of brain imaging studies reveals a circuitry of attentional networks involved in these control processes, with its source located in midfrontal areas. These areas are active during conflict resolution, error correction, and emotional regulation. A developmental approach to the organization of the anatomy involved in executive control provides an added perspective on how these mechanisms are influenced by maturation and learning, and how they relate to metacognitive activity.

Mindfulness-based approaches are increasingly employed as interventions for treating a variety of psychological, psychiatric and physical problems. Such approaches include ancient Buddhist mindfulness meditations such as Vipassana and Zen meditations, modern group-based standardized meditations, such as mindfulness-based stress reduction and mindfulness-based cognitive therapy, and further psychological interventions, such as dialectical behavioral therapy and acceptance and commitment therapy. We review commonalities and differences of these interventions regarding philosophical background, main techniques, aims, outcomes, neurobiology and psychological mechanisms. In sum, the currently applied mindfulness-based interventions show large differences in the way mindfulness is conceptualized and practiced. The decision to consider such practices as unitary or as distinct phenomena will probably influence the direction of future research. © 2011 Wiley Periodicals, Inc. J Clin Psychol 67:1-21, 2011.

The cognitive modulation of pain is influenced by a number of factors ranging from attention, beliefs, conditioning, expectations, mood, and the regulation of emotional responses to noxious sensory events. Recently, mindfulness meditation has been found attenuate pain through some of these mechanisms including enhanced cognitive and emotional control, as well as altering the contextual evaluation of sensory events. This review discusses the brain mechanisms involved in mindfulness meditation-related pain relief across different meditative techniques, expertise and training levels, experimental procedures, and neuroimaging methodologies. Converging lines of neuroimaging evidence reveal that mindfulness meditation-related pain relief is associated with unique appraisal cognitive processes depending on expertise level and meditation tradition. Moreover, it is postulated that mindfulness meditation-related pain relief may share a common final pathway with other cognitive techniques in the modulation of pain.

The beneficial clinical effects of mindfulness practices are receiving increasing support from empirical studies. However, the functional neural mechanisms underlying these benefits have not been thoroughly investigated. Some authors suggest that mindfulness should be described as a ‘top–down’ emotion regulation strategy, while others suggest that mindfulness should be described as a ‘bottom–up’ emotion regulation strategy. Current discrepancies might derive from the many different descriptions and applications of mindfulness. The present review aims to discuss current descriptions of mindfulness and the relationship existing between mindfulness practice and most commonly investigated emotion regulation strategies. Recent results from functional neuro-imaging studies investigating mindfulness training within the context of emotion regulation are presented. We suggest that mindfulness training is associated with ‘top–down’ emotion regulation in short-term practitioners and with ‘bottom–up’ emotion regulation in long-term practitioners. Limitations of current evidence and suggestions for future research on this topic are discussed.

Recent studies have shown that the presence of a caring relational partner can attenuate neural responses to threat. Here we report reanalyzed data from Coan, Schaefer, and Davidson ( 2006 ), investigating the role of relational mutuality in the neural response to threat. Mutuality reflects the degree to which couple members show mutual interest in the sharing of internal feelings, thoughts, aspirations, and joys - a vital form of responsiveness in attachment relationships. We predicted that wives who were high (versus low) in perceived mutuality, and who attended the study session with their husbands, would show reduced neural threat reactivity in response to mild electric shocks. We also explored whether this effect would depend on physical contact (hand-holding). As predicted, we observed that higher mutuality scores corresponded with decreased neural threat responding in the right dorsolateral prefrontal cortex and supplementary motor cortex. These effects were independent of hand-holding condition. These findings suggest that higher perceived mutuality corresponds with decreased self-regulatory effort and attenuated preparatory motor activity in response to threat cues, even in the absence of direct physical contact with social resources.
Zotero Collections:

Research on the “emotional brain” remains centered around the idea that emotions like fear, happiness, and sadness result from specialized and distinct neural circuitry. Accumulating behavioral and physiological evidence suggests, instead, that emotions are grounded in core affect—a person’s fluctuating level of pleasant or unpleasant arousal. A neuroimaging study revealed that participants’ subjective ratings of valence (i.e., pleasure/displeasure) and of arousal evoked by various fear, happiness, and sadness experiences correlated with neural activity in specific brain regions (orbitofrontal cortex and amygdala, respectively). We observed these correlations across diverse instances within each emotion category, as well as across instances from all three categories. Consistent with a psychological construction approach to emotion, the results suggest that neural circuitry realizes more basic processes across discrete emotions. The implicated brain regions regulate the body to deal with the world, producing the affective changes at the core of emotions and many other psychological phenomena.
Zotero Collections:

Children with an anxious temperament (AT) are at risk for developing psychiatric disorders along the internalizing spectrum, including anxiety and depression. Like these disorders, AT is a multidimensional phenotype and children with extreme anxiety show varying mixtures of physiological, behavioral, and other symptoms. Using a well-validated juvenile monkey model of AT, we addressed the degree to which this phenotypic heterogeneity reflects fundamental differences or similarities in the underlying neurobiology. The rhesus macaque is optimal for studying AT because children and young monkeys express the anxious phenotype in similar ways and have similar neurobiology. Fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET) in 238 freely behaving monkeys identified brain regions where metabolism predicted variation in three dimensions of the AT phenotype: hypothalamic-pituitary-adrenal (HPA) activity, freezing behavior, and expressive vocalizations. We distinguished brain regions that predicted all three dimensions of the phenotype from those that selectively predicted a single dimension. Elevated activity in the central nucleus of the amygdala and the anterior hippocampus was consistently found across individuals with different presentations of AT. In contrast, elevated activity in the lateral anterior hippocampus was selective to individuals with high levels of HPA activity, and decreased activity in the motor cortex (M1) was selective to those with high levels of freezing behavior. Furthermore, activity in these phenotype-selective regions mediated relations between amygdala metabolism and different expressions of anxiety. These findings provide a framework for understanding the mechanisms that lead to heterogeneity in the clinical presentation of internalizing disorders and set the stage for developing improved interventions.
Zotero Collections:

Meditation comprises a series of practices mainly developed in eastern cultures aiming at controlling emotions and enhancing attentional processes. Several authors proposed to divide meditation techniques in focused attention (FA) and open monitoring (OM) techniques. Previous studies have reported differences in brain networks underlying FA and OM. On the other hand common activations across different meditative practices have been reported. Despite differences between forms of meditation and their underlying cognitive processes, we propose that all meditative techniques could share a central process that would be supported by a core network for meditation since their general common goal is to induce relaxation, regulating attention and developing an attitude of detachment from one’s own thoughts. To test this hypothesis, we conducted a quantitative meta-analysis based on activation likelihood estimation (ALE) of 10 neuroimaging studies (91 subjects) on different meditative techniques to evidence the core cortical network subserving meditation. We showed activation of basal ganglia (caudate body), limbic system (enthorinal cortex) and medial prefrontal cortex (MPFC). We discuss the functional role of these structures in meditation and we tentatively propose a neurocognitive model of meditation that could guide future research.

Neuroimage phenotyping for psychiatric and neurological disorders is performed using voxelwise analyses also known as voxel based analyses or morphometry (VBM). A typical voxelwise analysis treats measurements at each voxel (e.g., fractional anisotropy, gray matter probability) as outcome measures to study the effects of possible explanatory variables (e.g., age, group) in a linear regression setting. Furthermore, each voxel is treated independently until the stage of correction for multiple comparisons. Recently, multi-voxel pattern analyses (MVPA), such as classification, have arisen as an alternative to VBM. The main advantage of MVPA over VBM is that the former employ multivariate methods which can account for interactions among voxels in identifying significant patterns. They also provide ways for computer-aided diagnosis and prognosis at individual subject level. However, compared to VBM, the results of MVPA are often more difficult to interpret and prone to arbitrary conclusions. In this paper, first we use penalized likelihood modeling to provide a unified framework for understanding both VBM and MVPA. We then utilize statistical learning theory to provide practical methods for interpreting the results of MVPA beyond commonly used performance metrics, such as leave-one-out-cross validation accuracy and area under the receiver operating characteristic (ROC) curve. Additionally, we demonstrate that there are challenges in MVPA when trying to obtain image phenotyping information in the form of statistical parametric maps (SPMs), which are commonly obtained from VBM, and provide a bootstrap strategy as a potential solution for generating SPMs using MVPA. This technique also allows us to maximize the use of available training data. We illustrate the empirical performance of the proposed framework using two different neuroimaging studies that pose different levels of challenge for classification using MVPA.
Zotero Collections:

Objective: To provide a comprehensive review and evaluation of the psychological and neurophysiological literature pertaining to mindfulness meditation.Methods: A search for papers in English was undertaken using PsycINFO (from 1804 onward), MedLine (from 1966 onward) and the Cochrane Library with the following search terms: Vipassana, Mindfulness, Meditation, Zen, Insight, EEG, ERP, fMRI, neuroimaging and intervention. In addition, retrieved papers and reports known to the authors were also reviewed for additional relevant literature.Results: Mindfulness-based therapeutic interventions appear to be effective in the treatment of depression, anxiety, psychosis, borderline personality disorder and suicidal/self-harm behaviour. Mindfulness meditation per se is effective in reducing substance use and recidivism rates in incarcerated populations but has not been specifically investigated in populations with psychiatric disorders. Electroencephalography research suggests increased alpha, theta and beta activity in frontal and posterior regions, some gamma band effects, with theta activity strongly related to level of experience of meditation; however, these findings have not been consistent. The few neuroimaging studies that have been conducted suggest volumetric and functional change in key brain regions.Conclusions: Preliminary findings from treatment outcome studies provide support for the application of mindfulness-based interventions in the treatment of affective, anxiety and personality disorders. However, direct evidence for the effectiveness of mindfulness meditation per se in the treatment of psychiatric disorders is needed. Current neurophysiological and imaging research findings have identified neural changes in association with meditation and provide a potentially promising avenue for future research.

Eudaimonic well-being—a sense of purpose, meaning, and engagement with life—is protective against psychopathology and predicts physical health, including lower levels of the stress hormone cortisol. Although it has been suggested that the ability to engage the neural circuitry of reward may promote well-being and mediate the relationship between well-being and health, this hypothesis has remained untested. To test this hypothesis, we had participants view positive, neutral, and negative images while fMRI data were collected. Individuals with sustained activity in the striatum and dorsolateral prefrontal cortex to positive stimuli over the course of the scan session reported greater well-being and had lower cortisol output. This suggests that sustained engagement of reward circuitry in response to positive events underlies well-being and adaptive regulation of the hypothalamic-pituitary-adrenal axis.
Zotero Collections:

Background Mindfulness meditation (MM) practices constitute an important group of meditative practices that have received growing attention. The aim of the present paper was to systematically review current evidence on the neurobiological changes and clinical benefits related to MM practice in psychiatric disorders, in physical illnesses and in healthy subjects.