Skip to main content Skip to search
Details
Displaying 51 - 72 of 72

Pages

  • Page
  • of 3
The impact of using motion estimates as covariates of no interest was examined in general linear modeling (GLM) of both block design and rapid event-related functional magnetic resonance imaging (fMRI) data. The purpose of motion correction is to identify and eliminate artifacts caused by task-correlated motion while maximizing sensitivity to true activations. To optimize this process, a combination of motion correction approaches was applied to data from 33 subjects performing both a block-design and an event-related fMRI experiment, including analysis: (1) without motion correction; (2) with motion correction alone; (3) with motion-corrected data and motion covariates included in the GLM; and (4) with non-motion-corrected data and motion covariates included in the GLM. Inclusion of covariates was found to be generally useful for increasing the sensitivity of GLM results in the analysis of event-related data. When motion parameters were included in the GLM for event-related data, it made little difference if motion correction was actually applied to the data. For the block design, inclusion of motion covariates had a deleterious impact on GLM sensitivity when even moderate correlation existed between motion and the experimental design. Based on these results, we present a general strategy for block designs, event-related designs, and hybrid designs to identify and eliminate probable motion artifacts while maximizing sensitivity to true activations.
Zotero Collections:

A review of behavioral and neurobiological data on mood and mood regulation as they pertain to an understanding of mood disorders is presented. Four approaches are considered: 1) behavioral and cognitive; 2) neurobiological; 3) computational; and 4) developmental. Within each of these four sections, we summarize the current status of the field and present our vision for the future, including particular challenges and opportunities. We conclude with a series of specific recommendations for National Institute of Mental Health priorities. Recommendations are presented for the behavioral domain, the neural domain, the domain of behavioral-neural interaction, for training, and for dissemination. It is in the domain of behavioral-neural interaction, in particular, that new research is required that brings together traditions that have developed relatively independently. Training interdisciplinary clinical scientists who meaningfully draw upon both behavioral and neuroscientific literatures and methods is critically required for the realization of these goals.
Zotero Collections:

OBJECTIVE: Positron emission tomography was used to investigate the neural substrates of normal human emotional and their dependence on the types of emotional stimulus. METHOD: Twelve healthy female subjects underwent 12 measurements of regional brain activity following the intravenous bolus administration of [15O]H2O as they alternated between emotion-generating and control film and recall tasks. Automated image analysis techniques were used to characterize and compare the increases in regional brain activity associated with the emotional response to complex visual (film) and cognitive (recall) stimuli. RESULTS: Film- and recall-generated emotion were each associated with significantly increased activity in the vicinity of the medial prefrontal cortex and thalamus, suggesting that these regions participate in aspects of emotion that do not depend on the nature of the emotional stimulus. Film-generated emotion was associated with significantly greater increases in activity bilaterally in the occipitotemporparietal cortex, lateral cerebellum, hypothalamus, and a region that includes the anterior temporal cortex, amygdala, and hippocampal formation, suggesting that these regions participate in the emotional response to certain exteroceptive sensory stimuli. Recall-generated sadness was associated with significantly greater increases in activity in the vicinity of the anterior insular cortex, suggesting that this region participates in the emotional response to potentially distressing cognitive or interoceptive sensory stimuli. CONCLUSIONS: While this study should be considered preliminary, it identified brain regions that participate in externally and internally generated human emotion.
Zotero Collections:

This special issue focuses on new developments that make up the expanding envelope of mindfulness-based psychological research. Briefly, the articles in this issue include the description and validation of a trait version of the Toronto Mindfulness Scale, an exploration of the mechanisms underlying the association between increased mindfulness and psychological adjustment, an investigation of whether practicing mindfulness between sessions contributes to symptom improvement, a study of the neural mechanisms underlying increased mindfulness in social anxiety disorder (SAD), and finally an evaluation of whether attachment style moderates participant response to mindfulness-based stress reduction (MBSR). The articles in this current special issue provide examples of recent areas of investigation in the pursuit of better understanding the growing clinical application of mindfulness-based interventions in Western health care. Potentially, these ongoing efforts will further improve the effectiveness of these treatments to reduce suffering.

Positive affect elicited in a mother toward her newborn infant may be one of the most powerful and evolutionarily preserved forms of positive affect in the emotional landscape of human behavior. This study examined the neurobiology of this form of positive emotion and in so doing, sought to overcome the difficulty of eliciting robust positive affect in response to visual stimuli in the physiological laboratory. Six primiparous human mothers with no indications of postpartum depression brought their infants into the laboratory for a photo shoot. Approximately 6 weeks later, they viewed photographs of their infant, another infant, and adult faces during acquisition of functional magnetic resonance images (fMRI). Mothers exhibited bilateral activation of the orbitofrontal cortex (OFC) while viewing pictures of their own versus unfamiliar infants. While in the scanner, mothers rated their mood more positively for pictures of their own infants than for unfamiliar infants, adults, or at baseline. The orbitofrontal activation correlated positively with pleasant mood ratings. In contrast, areas of visual cortex that also discriminated between own and unfamiliar infants were unrelated to mood ratings. These data implicate the orbitofrontal cortex in a mother's affective responses to her infant, a form of positive emotion that has received scant attention in prior human neurobiological studies. Furthermore, individual variations in orbitofrontal activation to infant stimuli may reflect an important dimension of maternal attachment.
Zotero Collections:

Neuroimage phenotyping for psychiatric and neurological disorders is performed using voxelwise analyses also known as voxel based analyses or morphometry (VBM). A typical voxelwise analysis treats measurements at each voxel (e.g., fractional anisotropy, gray matter probability) as outcome measures to study the effects of possible explanatory variables (e.g., age, group) in a linear regression setting. Furthermore, each voxel is treated independently until the stage of correction for multiple comparisons. Recently, multi-voxel pattern analyses (MVPA), such as classification, have arisen as an alternative to VBM. The main advantage of MVPA over VBM is that the former employ multivariate methods which can account for interactions among voxels in identifying significant patterns. They also provide ways for computer-aided diagnosis and prognosis at individual subject level. However, compared to VBM, the results of MVPA are often more difficult to interpret and prone to arbitrary conclusions. In this paper, first we use penalized likelihood modeling to provide a unified framework for understanding both VBM and MVPA. We then utilize statistical learning theory to provide practical methods for interpreting the results of MVPA beyond commonly used performance metrics, such as leave-one-out-cross validation accuracy and area under the receiver operating characteristic (ROC) curve. Additionally, we demonstrate that there are challenges in MVPA when trying to obtain image phenotyping information in the form of statistical parametric maps (SPMs), which are commonly obtained from VBM, and provide a bootstrap strategy as a potential solution for generating SPMs using MVPA. This technique also allows us to maximize the use of available training data. We illustrate the empirical performance of the proposed framework using two different neuroimaging studies that pose different levels of challenge for classification using MVPA.
Zotero Collections:

Increasing research indicates that concepts are represented as distributed circuits of property information across the brain's modality-specific areas. The current study examines the distributed representation of an important but under-explored category, foods. Participants viewed pictures of appetizing foods (along with pictures of locations for comparison) during event-related fMRI. Compared to location pictures, food pictures activated the right insula/operculum and the left orbitofrontal cortex, both gustatory processing areas. Food pictures also activated regions of visual cortex that represent object shape. Together these areas contribute to a distributed neural circuit that represents food knowledge. Not only does this circuit become active during the tasting of actual foods, it also becomes active while viewing food pictures. Via the process of pattern completion, food pictures activate gustatory regions of the circuit to produce conceptual inferences about taste. Consistent with theories that ground knowledge in the modalities, these inferences arise as reenactments of modality-specific processing.
Zotero Collections:

BACKGROUND: Despite the apparent high placebo response rate in randomized placebo-controlled trials (RCT) of patients with irritable bowel syndrome (IBS), little is known about the variability and predictors of this response. OBJECTIVES: To describe the magnitude of response in placebo arms of IBS clinical trials and to identify which factors predict the variability of the placebo response. METHODS: We performed a meta-analysis of published, English language, RCT with 20 or more IBS patients who were treated for at least 2 weeks. This analysis is limited to studies that assessed global response (improvement in overall symptoms). The variables considered as potential placebo modifiers were study design, study duration, use of a run-in phase, Jadad score, entry criteria, number of office visits, number of office visits/study duration, use of diagnostic testing, gender, age and type of medication studied. FINDINGS: Forty-five placebo-controlled RCTs met the inclusion criteria. The placebo response ranged from 16.0 to 71.4% with a population-weighted average of 40.2%, 95% CI (35.9-44.4). Significant associations with lower placebo response rates were fulfillment of the Rome criteria for study entry (P=0.049) and an increased number of office visits (P=0.026). CONCLUSIONS: Placebo effects in IBS clinical trials measuring a global outcome are highly variable. Entry criteria and number of office visits are significant predictors of the placebo response. More stringent entry criteria and an increased number of office visits appear to independently decrease the placebo response.
Zotero Collections:

Individuals with fragile X syndrome (FXS) commonly display characteristics of social anxiety, including gaze aversion, increased time to initiate social interaction, and difficulty forming meaningful peer relationships. While neural correlates of face processing, an important component of social interaction, are altered in FXS, studies have not examined whether social anxiety in this population is related to higher cognitive processes, such as memory. This study aimed to determine whether the neural circuitry involved in face encoding was disrupted in individuals with FXS, and whether brain activity during face encoding was related to levels of social anxiety. A group of 11 individuals with FXS (5 M) and 11 age- and gender-matched control participants underwent fMRI scanning while performing a face encoding task with online eye-tracking. Results indicate that compared to the control group, individuals with FXS exhibited decreased activation of prefrontal regions associated with complex social cognition, including the medial and superior frontal cortex, during successful face encoding. Further, the FXS and control groups showed significantly different relationships between measures of social anxiety (including gaze-fixation) and brain activity during face encoding. These data indicate that social anxiety in FXS may be related to the inability to successfully recruit higher level social cognition regions during the initial phases of memory formation.
Zotero Collections:

Psychotherapeutic interventions containing training in mindfulness meditation have been shown to help participants with a variety of somatic and psychological conditions. Mindfulness-based cognitive therapy (MBCT) is a meditation-based psychotherapeutic intervention designed to help reduce the risk of relapse of recurrent depression. There is encouraging early evidence from multi-centre randomized controlled trials. However, little is known of the process by which MBCT may bring therapeutic benefits. This study set out to explore participants' accounts of MBCT in the mental-health context. Seven participants were interviewed in two phases. Interview data from four participants were obtained in the weeks following MBCT. Grounded theory techniques were used to identify several categories that combine to describe the ways in which mental-health difficulties arose as well as their experiences of MBCT. Three further participants who have continued to practise MBCT were interviewed so as to further validate, elucidate and extend these categories. The theory suggested that the preconceptions and expectations of therapy are important influences on later experiences of MBCT. Important areas of therapeutic change ('coming to terms') were identified, including the development of mindfulness skills, an attitude of acceptance and 'living in the moment'. The development of mindfulness skills was seen to hold a key role in the development of change. Generalization of these skills to everyday life was seen as important, and several ways in which this happened, including the use of breathing spaces, were discussed. The study emphasized the role of continued skills practice for participants' therapeutic gains. In addition, several of the concepts and categories offered support to cognitive accounts of mood disorder and the role of MBCT in reducing relapse.
Zotero Collections:

BACKGROUND: Anhedonia, a reduced ability to experience pleasure, is a chief symptom of major depressive disorder and is related to reduced frontostriatal connectivity when attempting to upregulate positive emotion. The present study examined another facet of positive emotion regulation associated with anhedonia-namely, the downregulation of positive affect-and its relation to prefrontal cortex (PFC) activity. METHODS: Neuroimaging data were collected from 27 individuals meeting criteria for major depressive disorder as they attempted to suppress positive emotion during a positive emotion regulation task. Their PFC activation pattern was compared with the PFC activation pattern exhibited by 19 healthy control subjects during the same task. Anhedonia scores were collected at three time points: at baseline (time 1), 8 weeks after time 1 (i.e., time 2), and 6 months after time 1 (i.e., time 3). Prefrontal cortex activity at time 1 was used to predict change in anhedonia over time. Analyses were conducted utilizing hierarchical linear modeling software. RESULTS: Depressed individuals who could not inhibit positive emotion-evinced by reduced right ventrolateral prefrontal cortex activity during attempts to dampen their experience of positive emotion in response to positive visual stimuli-exhibited a steeper anhedonia reduction slope between baseline and 8 weeks of treatment with antidepressant medication (p < .05). Control subjects showed a similar trend between baseline and time 3. CONCLUSIONS: To reduce anhedonia, it may be necessary to teach individuals how to counteract the functioning of an overactive pleasure-dampening prefrontal inhibitory system.
Zotero Collections:

Given the central role of the amygdala in fear perception and expression and its likely abnormality in affective disorders and autism, there is great demand for a technique to measure differences in neurochemistry of the human amygdala. Unfortunately, it is also a technically complex target for magnetic resonance spectroscopy (MRS) due to a small volume, high field inhomogeneity and a shared boundary with hippocampus, which can undergo opposite changes in response to stress. We attempted to achieve reliable PRESS-localized single-voxel MRS at 3T of the isolated human amygdala by using anatomy to guide voxel size and location. We present data from 106 amygdala-MRS sessions from 58 volunteers aged 10 to 52 years, including two tests of one-week stability and a feasibility study in an adolescent sample. Our main outcomes were indices of spectral quality, repeated measurement variability (within- and between-subject standard deviations), and sensitivity to stable individual differences measured by intra-class correlation (ICC). We present metrics of amygdala-MRS reliability for n-acetyl-aspartate, creatine, choline, myo-Inositol, and glutamate+glutamine (Glx). We found that scan quality suffers an age-related difference in field homogeneity and modified our protocol to compensate. We further identified an effect of anatomical inclusion near the endorhinal sulcus, a region of high synaptic density, that contributes up to 29% of within-subject variability across 4 sessions (n=14). Remaining variability in line width but not signal-to-noise also detracts from reliability. Statistical correction for partial inclusion of these strong neurochemical gradients decreases n-acetyl-aspartate reliability from an intraclass correlation of 0.84 to 0.56 for 7-minute acquisitions. This suggests that systematic differences in anatomical inclusion can contribute greatly to apparent neurochemical concentrations and could produce false group differences in experimental studies. Precise, anatomically-based prescriptions that avoid age-related sources of inhomogeneity and use longer scan times may permit study of individual differences in neurochemistry throughout development in this late-maturing structure.
Zotero Collections:

Four U.S. sites formed a consortium to conduct a multisite study of fMRI methods. The primary purpose of this consortium was to examine the reliability and reproducibility of fMRI results. FMRI data were collected on healthy adults during performance of a spatial working memory task at four different institutions. Two sets of data from each institution were made available. First, data from two subjects were made available from each site and were processed and analyzed as a pooled data set. Second, statistical maps from five to eight subjects per site were made available. These images were aligned in stereotactic space and common regions of activation were examined to address the reproducibility of fMRI results when both image acquisition and analysis vary as a function of site. Our grouped and individual data analyses showed reliable patterns of activation in dorsolateral prefrontal cortex and posterior parietal cortex during performance of the working memory task across all four sites. This multisite study, the first of its kind using fMRI data, demonstrates highly consistent findings across sites.
Zotero Collections:

Social cognition, including complex social judgments and attitudes, is shaped by individual learning experiences, where affect often plays a critical role. Aversive classical conditioning-a form of associative learning involving a relationship between a neutral event (conditioned stimulus, CS) and an aversive event (unconditioned stimulus, US)-represents a well-controlled paradigm to study how the acquisition of socially relevant knowledge influences behavior and the brain. Unraveling the temporal unfolding of brain mechanisms involved appears critical for an initial understanding about how social cognition operates. Here, 128-channel ERPs were recorded in 50 subjects during the acquisition phase of a differential aversive classical conditioning paradigm. The CS+ (two fearful faces) were paired 50% of the time with an aversive noise (CS upward arrow + /Paired), whereas in the remaining 50% they were not (CS upward arrow + /Unpaired); the CS- (two different fearful faces) were never paired with the noise. Scalp ERP analyses revealed differences between CS upward arrow + /Unpaired and CS- as early as approximately 120 ms post-stimulus. Tomographic source localization analyses revealed early activation modulated by the CS+ in the ventral visual pathway (e.g. fusiform gyrus, approximately 120 ms), right middle frontal gyrus (approximately 176 ms), and precuneus (approximately 240 ms). At approximately 120 ms, the CS- elicited increased activation in the left insula and left middle frontal gyrus. These findings not only confirm a critical role of prefrontal, insular, and precuneus regions in aversive conditioning, but they also suggest that biologically and socially salient information modulates activation at early stages of the information processing flow, and thus furnish initial insight about how affect and social judgments operate.
Zotero Collections:

We used fMRI to examine amygdala activation in response to fearful facial expressions, measured over multiple scanning sessions. 15 human subjects underwent three scanning sessions, at 0, 2 and 8 weeks. During each session, functional brain images centered about the amygdala were acquired continuously while participants were shown alternating blocks of fearful, neutral and happy facial expressions. Intraclass correlation coefficients calculated across the sessions indicated stability of response in left amygdala to fearful faces (as a change from baseline), but considerably less left amygdala stability in responses to neutral expressions and for fear versus neutral contrasts. The results demonstrate that the measurement of fMRI BOLD responses in amygdala to fearful facial expressions might be usefully employed as an index of amygdala reactivity over extended periods. While signal change to fearful facial expressions appears robust, the experimental design employed here has yielded variable responsivity within baseline or comparison conditions. Future studies might manipulate the experimental design to either amplify or attenuate this variability, according to the goals of the research.
Zotero Collections:

We present a new tensor-based morphometric framework that quantifies cortical shape variations using a local area element. The local area element is computed from the Riemannian metric tensors, which are obtained from the smooth functional parametrization of a cortical mesh. For the smooth parametrization, we have developed a novel weighted spherical harmonic (SPHARM) representation, which generalizes the traditional SPHARM as a special case. For a specific choice of weights, the weighted-SPHARM is shown to be the least squares approximation to the solution of an isotropic heat diffusion on a unit sphere. The main aims of this paper are to present the weighted-SPHARM and to show how it can be used in the tensor-based morphometry. As an illustration, the methodology has been applied in the problem of detecting abnormal cortical regions in the group of high functioning autistic subjects.
Zotero Collections:

Muscle electrical activity, or "electromyogenic" (EMG) artifact, poses a serious threat to the validity of electroencephalography (EEG) investigations in the frequency domain. EMG is sensitive to a variety of psychological processes and can mask genuine effects or masquerade as legitimate neurogenic effects across the scalp in frequencies at least as low as the alpha band (8-13 Hz). Although several techniques for correcting myogenic activity have been described, most are subjected to only limited validation attempts. Attempts to gauge the impact of EMG correction on intracerebral source models (source "localization" analyses) are rarer still. Accordingly, we assessed the sensitivity and specificity of one prominent correction tool, independent component analysis (ICA), on the scalp and in the source-space using high-resolution EEG. Data were collected from 17 participants while neurogenic and myogenic activity was independently varied. Several protocols for classifying and discarding components classified as myogenic and non-myogenic artifact (e.g., ocular) were systematically assessed, leading to the exclusion of one-third to as much as three-quarters of the variance in the EEG. Some, but not all, of these protocols showed adequate performance on the scalp. Indeed, performance was superior to previously validated regression-based techniques. Nevertheless, ICA-based EMG correction exhibited low validity in the intracerebral source-space, likely owing to incomplete separation of neurogenic from myogenic sources. Taken with prior work, this indicates that EMG artifact can substantially distort estimates of intracerebral spectral activity. Neither regression- nor ICA-based EMG correction techniques provide complete safeguards against such distortions. In light of these results, several practical suggestions and recommendations are made for intelligently using ICA to minimize EMG and other common artifacts.
Zotero Collections:

Recent neuroimaging and neuropsychological work has begun to shed light on how the brain responds to the viewing of facial expressions of emotion. However, one important category of facial expression that has not been studied on this level is the facial expression of pain. We investigated the neural response to pain expressions by performing functional magnetic resonance imaging (fMRI) as subjects viewed short video sequences showing faces expressing either moderate pain or, for comparison, no pain. In alternate blocks, the same subjects received both painful and non-painful thermal stimulation. Facial expressions of pain were found to engage cortical areas also engaged by the first-hand experience of pain, including anterior cingulate cortex and insula. The reported findings corroborate other work in which the neural response to witnessed pain has been examined from other perspectives. In addition, they lend support to the idea that common neural substrates are involved in representing one's own and others' affective states.
Zotero Collections:

We present a novel weighted Fourier series (WFS) representation for cortical surfaces. The WFS representation is a data smoothing technique that provides the explicit smooth functional estimation of unknown cortical boundary as a linear combination of basis functions. The basic properties of the representation are investigated in connection with a self-adjoint partial differential equation and the traditional spherical harmonic (SPHARM) representation. To reduce steep computational requirements, a new iterative residual fitting (IRF) algorithm is developed. Its computational and numerical implementation issues are discussed in detail. The computer codes are also available at http://www.stat.wisc.edu/-mchung/softwares/weighted.SPHARM/weighted-SPHARM.html. As an illustration, the WFS is applied i n quantifying the amount ofgray matter in a group of high functioning autistic subjects. Within the WFS framework, cortical thickness and gray matter density are computed and compared.
Zotero Collections:

Pages

  • Page
  • of 3