Skip to main content Skip to search
Displaying 1 - 5 of 5
<p>Many powerful human emotional thoughts are generated in the absence of a precipitating event in the environment. Here, we tested whether we can decode the valence of internally driven, self-generated thoughts during task-free rest based on neural similarities with task-related affective mental states. We acquired functional magnetic resonance imaging (fMRI) data while participants generated positive and negative thoughts as part of an attribution task (Session A) and while they reported the occurrence of comparable mental states during task-free rest periods (Session B). With the use of multivariate pattern analyses (MVPA), we identified response patterns in the medial orbitofrontal cortex (mOFC) that encode the affective content of thoughts that are generated in response to an external experimental cue. Importantly, these task driven response patterns reliably predicted the occurrence of affective thoughts generated during unconstrained rest periods recorded one week apart. This demonstrates that at least certain elements of task-cued and task-free affective experiences rely on a common neural code. Furthermore, our findings reveal the role that the mOFC plays in determining the affective tone of unconstrained thoughts. More generally, our results suggest that MVPA is an important methodological tool for attempts to understand unguided subject driven mental states such as mind-wandering and daydreaming based on neural similarities with task-based experiences.</p>
Zotero Collections:

The influence of approach and avoidance tendencies on affect, reasoning, and behavior has attracted substantial interest from researchers across various areas of psychology. Currently, frontal electroencephalographic (EEG) asymmetry in favor of left prefrontal regions is assumed to reflect the propensity to respond with approach-related tendencies. To test this hypothesis, we recorded resting EEG in 18 subjects, who separately performed a verbal memory task under three incentive conditions (neutral, reward, and punishment). Using a source-localization technique, we found that higher task-independent alpha2 (10.5-12 Hz) activity within left dorsolateral prefrontal and medial orbitofrontal regions was associated with stronger bias to respond to reward-related cues. Left prefrontal resting activity accounted for 54.8% of the variance in reward bias. These findings not only confirm that frontal EEG asymmetry modulates the propensity to engage in appetitively motivated behavior, but also provide anatomical details about the underlying brain systems.
Zotero Collections:

Mindfulness meditation has been shown to promote emotional stability. Moreover, during the processing of aversive and self-referential stimuli, mindful awareness is associated with reduced medial prefrontal cortex (MPFC) activity, a central default mode network (DMN) component. However, it remains unclear whether mindfulness practice influences functional connectivity between DMN regions and, if so, whether such impact persists beyond a state of meditation. Consequently, this study examined the effect of extensive mindfulness training on functional connectivity within the DMN during a restful state. Resting-state data were collected from 13 experienced meditators (with over 1000 h of training) and 11 beginner meditators (with no prior experience, trained for 1 week before the study) using functional magnetic resonance imaging (fMRI). Pairwise correlations and partial correlations were computed between DMN seed regions’ time courses and were compared between groups utilizing a Bayesian sampling scheme. Relative to beginners, experienced meditators had weaker functional connectivity between DMN regions involved in self-referential processing and emotional appraisal. In addition, experienced meditators had increased connectivity between certain DMN regions (e.g. dorso-medial PFC and right inferior parietal lobule), compared to beginner meditators. These findings suggest that meditation training leads to functional connectivity changes between core DMN regions possibly reflecting strengthened present-moment awareness.

Areas associated with the default mode network (DMN) are substantially similar to those associated with meditation practice. However, no studies on DMN connectivity during resting states have been conducted on meditation practitioners. It was hypothesized that meditators would show heightened functional connectivity in areas of cortical midline activity. Thirty-five meditation practitioners and 33 healthy controls without meditation experience were included in this study. All subjects received 4.68-min resting state functional scanning runs. The posterior cingulate cortex and medial prefrontal cortex were chosen as seed regions for the DMN map. Meditation practitioners demonstrated greater functional connectivity within the DMN in the medial prefrontal cortex area (x y z = 3 39 −21) than did controls. These results suggest that the long-term practice of meditation may be associated with functional changes in regions related to internalized attention even when meditation is not being practiced.

Those with high baseline stress levels are more likely to develop mild cognitive impairment (MCI) and Alzheimer's Disease (AD). While meditation may reduce stress and alter the hippocampus and default mode network (DMN), little is known about its impact in these populations. Our objective was to conduct a "proof of concept" trial to determine whether Mindfulness Based Stress Reduction (MBSR) would improve DMN connectivity and reduce hippocampal atrophy among adults with MCI. 14 adults with MCI were randomized to MBSR vs. usual care and underwent resting state fMRI at baseline and follow-up. Seed based functional connectivity was applied using posterior cingulate cortex as seed. Brain morphometry analyses were performed using FreeSurfer. The results showed that after the intervention, MBSR participants had increased functional connectivity between the posterior cingulate cortex and bilateral medial prefrontal cortex and left hippocampus compared to controls. In addition, MBSR participants had trends of less bilateral hippocampal volume atrophy than control participants. These preliminary results indicate that in adults with MCI, MBSR may have a positive impact on the regions of the brain most related to MCI and AD. Further research with larger sample sizes and longer-follow-up are needed to further investigate the results from this pilot study.