Skip to main content Skip to search
Details
Displaying 26 - 50 of 96

Pages

  • Page
  • of 4
This study examined the effects of meditation on mental imagery, evaluating Buddhist monks' reports concerning their extraordinary imagery skills. Practitioners of Buddhist meditation were divided into two groups according to their preferred meditation style: Deity Yoga (focused attention on an internal visual image) or Open Presence (evenly distributed attention, not directed to any particular object). Both groups of meditators completed computerized mental-imagery tasks before and after meditation. Their performance was compared with that of control groups, who either rested or performed other visuospatial tasks between testing sessions. The results indicate that all the groups performed at the same baseline level, but after meditation, Deity Yoga practitioners demonstrated a dramatic increase in performance on imagery tasks compared with the other groups. The results suggest that Deity meditation specifically trains one's capacity to access heightened visuospatial processing resources, rather than generally improving visuospatial imagery abilities.

In two prior studies, we investigated the neural mechanisms of spatial attention using a combined event-related potential (ERP) and positron emission tomography (PET) approach (Heinze et al. [1994]: Nature 392:543-546; Mangun et al. [1997]: Hum Brain Mapp 5:273-279). Neural activations in extrastriate cortex were observed in the PET measures for attended stimuli, and these effects were related to attentional modulations in the ERPs at specific latencies. The present study used functional magnetic resonance imaging (fMRI) and ERPs in single subjects to investigate the intersubject variability in extrastriate spatial attention effects, and to qualitatively compare this to variations in ERP attention effects. Activations in single subjects replicated our prior group-averaged PET findings, showing attention-related increases in blood flow in the posterior fusiform and middle occipital gyri in the hemisphere contralateral to attended visual stimuli. All subjects showed attentional modulations of the occipital P1 component of the ERPs. These findings in single subjects demonstrate the consistency of extrastriate attention effects, and provide information about the feasibility of this approach for integration of electrical and functional imaging data.
Zotero Collections:

BACKGROUND: Relationships between aberrant social functioning and depression have been explored via behavioral, clinical, and survey methodologies, highlighting their importance in the etiology of depression. The neural underpinnings of these relationships, however, have not been explored. METHODS: Nine depressed participants and 14 never-depressed control subjects viewed emotional and neutral pictures at two functional magnetic resonance imaging (fMRI) scanning sessions approximately 22 weeks apart. In the interim, depressed patients received the antidepressant Venlafaxine. Positively rated images were parsed into three separate comparisons: social interaction, human faces, and sexual images; across scanning session, activation to these images was compared with other positively rated images. RESULTS: For each of the three social stimulus types (social interaction, faces, sexual images), a distinguishable circuitry was activated equally in non-depressed control subjects and post-treatment depressed subjects but showed a hypo-response in the depressed group pre-treatment. These structures include regions of prefrontal, temporal, and parietal cortices, insula, basal ganglia, and the hippocampus. CONCLUSIONS: The neural hypo-response to positively valenced social stimuli that is observed in depression remits as response to antidepressant medication occurs, suggesting a state-dependent deficiency in response to positive social incentives. These findings underscore the importance of addressing social dysfunction in research and treatment of depression.
Zotero Collections:

Neuroanatomists posit that the central nucleus of the amygdala (Ce) and bed nucleus of the stria terminalis (BST) comprise two major nodes of a macrostructural forebrain entity termed the extended amygdala. The extended amygdala is thought to play a critical role in adaptive motivational behavior and is implicated in the pathophysiology of maladaptive fear and anxiety. Resting functional connectivity of the Ce was examined in 107 young anesthetized rhesus monkeys and 105 young humans using standard resting-state functional magnetic resonance imaging (fMRI) methods to assess temporal correlations across the brain. The data expand the neuroanatomical concept of the extended amygdala by finding, in both species, highly significant functional coupling between the Ce and the BST. These results support the use of in vivo functional imaging methods in nonhuman and human primates to probe the functional anatomy of major brain networks such as the extended amygdala.
Zotero Collections:

BACKGROUND: Two core characteristics of pathologic fear are its rapid onset and resistance to cognitive regulation. We hypothesized that activation of the amygdala early in the presentation of fear-relevant visual stimuli would distinguish phobics from nonphobics. METHODS: Chronometry of amygdala activation to phobia-relevant pictures was assessed in 13 spider phobics and 14 nonphobics using functional magnetic resonance imaging (fMRI). RESULTS: Blood oxygen level-dependent (BOLD) responses in the amygdala early in picture processing consistently differentiated between phobic and nonphobic subjects, as well as between phobogenic and nonphobogenic stimuli among phobics. Furthermore, amygdalar BOLD responses associated with timing but not magnitude of activation predicted affective responses to phobogenic stimuli. Computational modeling procedures were used to identify patterns of neural activation in the amygdala that could yield the observed BOLD data. These data suggest that phobic responses were characterized by strong but brief amygdala responses, whereas nonphobic responses were weaker and more sustained. CONCLUSIONS: Results are discussed in the context of the amygdala's role in rapid threat detection and the vigilance-avoidance hypothesis of anxiety. These data highlight the importance of examining the neural substrates of the immediate impact of phobogenic stimuli for understanding pathological fear.
Zotero Collections:

The LASS theory proposes that Language and Situated Simulation both play central roles in conceptual processing. Depending on stimuli and task conditions, different mixtures of language and simulation occur. When a word is processed in a conceptual task, it first activates other linguistic forms, such as word associates. More slowly, the word activates a situated simulation to represent its meaning in neural systems for perception, action, and mental states. An fMRI experiment tested the LASS account. In a first scanning session, participants performed the property generation task to provide a measure of conceptual processing. In a second scanning session a week later, participants performed two localizer tasks measuring word association and situated simulation. Conjunction analyses supported predictions of the LASS theory. Activations early in conceptual processing overlapped with activations for word association. Activations late in conceptual processing overlapped with activations for situation generation. These results, along with others in the literature, indicate that conceptual processing uses multiple representations, not one. Furthermore, researchers must be careful drawing conclusions about conceptual processing, given that different paradigms are likely to produce different mixtures of language and simulation. Whereas some paradigms produce high levels of linguistic processing and low levels of simulation, other paradigms produce the opposite pattern.
Zotero Collections:

Previous research indicates that drug motivational systems are instantiated in structures that process information related to incentive, motivational drive, memorial, motor/habit, craving, and cognitive control processing. The present research tests the hypothesis that activity in such systems will be powerfully affected by the combination of drug anticipation and drug withdrawal. Event-related fMRI was used to examine activation in response to a preinfusion warning cue in two experimental sessions that manipulated withdrawal status. Significant cue-induced effects were seen in the caudate, ventral anterior nucleus of the thalamus, the insula, subcallosal gyrus, nucleus accumbens, and anterior cingulate. These results suggest that withdrawal and nicotine anticipation produce (1) different motor preparatory and inhibitory response processing and (2) different craving related processing.
Zotero Collections:

The influence of approach and avoidance tendencies on affect, reasoning, and behavior has attracted substantial interest from researchers across various areas of psychology. Currently, frontal electroencephalographic (EEG) asymmetry in favor of left prefrontal regions is assumed to reflect the propensity to respond with approach-related tendencies. To test this hypothesis, we recorded resting EEG in 18 subjects, who separately performed a verbal memory task under three incentive conditions (neutral, reward, and punishment). Using a source-localization technique, we found that higher task-independent alpha2 (10.5-12 Hz) activity within left dorsolateral prefrontal and medial orbitofrontal regions was associated with stronger bias to respond to reward-related cues. Left prefrontal resting activity accounted for 54.8% of the variance in reward bias. These findings not only confirm that frontal EEG asymmetry modulates the propensity to engage in appetitively motivated behavior, but also provide anatomical details about the underlying brain systems.
Zotero Collections:

Major depression is a heterogeneous condition, and the search for neural correlates specific to clinically defined subtypes has been inconclusive. Theoretical considerations implicate frontostriatal, particularly subgenual prefrontal cortex (PFC), dysfunction in the pathophysiology of melancholia--a subtype of depression characterized by anhedonia--but no empirical evidence has been found yet for such a link. To test the hypothesis that melancholic, but not nonmelancholic depression, is associated with the subgenual PFC impairment, concurrent measurement of brain electrical (electroencephalogram, EEG) and metabolic (positron emission tomography, PET) activity were obtained in 38 unmedicated subjects with DSM-IV major depressive disorder (20 melancholic, 18 nonmelancholic subjects), and 18 comparison subjects. EEG data were analyzed with a tomographic source localization method that computed the cortical three-dimensional distribution of current density for standard frequency bands, allowing voxelwise correlations between the EEG and PET data. Voxel-based morphometry analyses of structural magnetic resonance imaging (MRI) data were performed to assess potential structural abnormalities in melancholia. Melancholia was associated with reduced activity in the subgenual PFC (Brodmann area 25), manifested by increased inhibitory delta activity (1.5-6.0 Hz) and decreased glucose metabolism, which themselves were inversely correlated. Following antidepressant treatment, depressed subjects with the largest reductions in depression severity showed the lowest post-treatment subgenual PFC delta activity. Analyses of structural MRI revealed no group differences in the subgenual PFC, but in melancholic subjects, a negative correlation between gray matter density and age emerged. Based on preclinical evidence, we suggest that subgenual PFC dysfunction in melancholia may be associated with blunted hedonic response and exaggerated stress responsiveness.
Zotero Collections:

The relationships between brain electrical and metabolic activity are being uncovered currently in animal models using invasive methods; however, in the human brain this relationship remains not well understood. In particular, the relationship between noninvasive measurements of electrical activity and metabolism remains largely undefined. To understand better these relations, cerebral activity was measured simultaneously with electroencephalography (EEG) and positron emission tomography using [(18)f]-fluoro-2-deoxy-D-glucose (PET-FDG) in 12 normal human subjects during rest. Intracerebral distributions of current density were estimated, yielding tomographic maps for seven standard EEG frequency bands. The PET and EEG data were registered to the same space and voxel dimensions, and correlational maps were created on a voxel-by-voxel basis across all subjects. For each band, significant positive and negative correlations were found that are generally consistent with extant understanding of EEG band power function. With increasing EEG frequency, there was an increase in the number of positively correlated voxels, whereas the lower alpha band (8.5-10.0 Hz) was associated with the highest number of negative correlations. This work presents a method for comparing EEG signals with other more traditionally tomographic functional imaging data on a 3-D basis. This method will be useful in the future when it is applied to functional imaging methods with faster time resolution, such as short half-life PET blood flow tracers and functional magnetic resonance imaging.
Zotero Collections:

BACKGROUND: Functional magnetic resonance imaging (fMRI) holds promise as a noninvasive means of identifying neural responses that can be used to predict treatment response before beginning a drug trial. Imaging paradigms employing facial expressions as presented stimuli have been shown to activate the amygdala and anterior cingulate cortex (ACC). Here, we sought to determine whether pretreatment amygdala and rostral ACC (rACC) reactivity to facial expressions could predict treatment outcomes in patients with generalized anxiety disorder (GAD). METHODS: Fifteen subjects (12 female subjects) with GAD participated in an open-label venlafaxine treatment trial. Functional magnetic resonance imaging responses to facial expressions of emotion collected before subjects began treatment were compared with changes in anxiety following 8 weeks of venlafaxine administration. In addition, the magnitude of fMRI responses of subjects with GAD were compared with that of 15 control subjects (12 female subjects) who did not have GAD and did not receive venlafaxine treatment. RESULTS: The magnitude of treatment response was predicted by greater pretreatment reactivity to fearful faces in rACC and lesser reactivity in the amygdala. These individual differences in pretreatment rACC and amygdala reactivity within the GAD group were observed despite the fact that 1) the overall magnitude of pretreatment rACC and amygdala reactivity did not differ between subjects with GAD and control subjects and 2) there was no main effect of treatment on rACC-amygdala reactivity in the GAD group. CONCLUSIONS: These findings show that this pattern of rACC-amygdala responsivity could prove useful as a predictor of venlafaxine treatment response in patients with GAD.
Zotero Collections:

The capacity to anticipate aversive circumstances is central not only to successful adaptation but also to understanding the abnormalities that contribute to excessive worry and anxiety disorders. Forecasting and reacting to aversive events mobilize a host of affective and cognitive capacities and corresponding brain processes. Rapid event-related functional magnetic resonance imaging (fMRI) in 21 healthy volunteers assessed the overlap and divergence in the neural instantiation of anticipating and being exposed to aversive pictures. Brain areas jointly activated by the anticipation of and exposure to aversive pictures included the dorsal amygdala, anterior insula, dorsal anterior cingulate cortex (ACC), right dorsolateral prefrontal cortex (DLPFC), and right posterior orbitofrontal cortex (OFC). Anticipatory processes were uniquely associated with activations in rostral ACC, a more superior sector of the right DLPFC, and more medial sectors of the bilateral OFC. Activation of the right DLPFC in anticipation of aversion was associated with self-reports of increased negative affect, whereas OFC activation was associated with increases in both positive and negative affect. These results show that anticipation of aversion recruits key brain regions that respond to aversion, thereby potentially enhancing adaptive responses to aversive events.
Zotero Collections:

In this commentary I discuss the integration of mindful procedures in cognitive therapy of generalized anxiety disorder (CAD) and attempt to answer questions concerning the effects of mindfulness on information processing and on mechanisms purported to maintain CAD in the meta-cognitive model of this disorder. Different techniques that promote mindfulness can be identified, including mindfulness meditation and attention training. These techniques are intended to disrupt repetitive styles of dysfunctional thinking. I argue that the effect of mindfulness strategies on information processing in emotional disorder can be conceptualized in meta-cognitive terms as (a) activating a meta-cognitive mode of processing; (b) disconnecting the influence of maladaptive beliefs on processing; (c) strengthening flexible responding to threat; and (d) strengthening meta-cognitive plans for controlling cognition. Although mindfulness meditation may have general treatment applications, the meta-cognitive model of CAD suggests caution in using this treatment in CAD. It is unclear which dimension of worry should be targeted, and mindfulness meditation does not contain information that can lead to unambiguous disconfirmation of erroneous beliefs about worry.

BACKGROUND: The broad autism phenotype includes subclinical autistic characteristics found to have a higher prevalence in unaffected family members of individuals with autism. These characteristics primarily affect the social aspects of language, communication, and human interaction. The current research focuses on possible neurobehavioral characteristics associated with the broad autism phenotype. METHODS: We used a face-processing task associated with atypical patterns of gaze fixation and brain function in autism while collecting brain functional magnetic resonance imaging (fMRI) and eye tracking in unaffected siblings of individuals with autism. RESULTS: We found robust differences in gaze fixation and brain function in response to images of human faces in unaffected siblings compared with typically developing control individuals. The siblings' gaze fixations and brain activation patterns during the face processing task were similar to that of the autism group and showed decreased gaze fixation along with diminished fusiform activation compared with the control group. Furthermore, amygdala volume in the siblings was similar to the autism group and was significantly reduced compared with the control group. CONCLUSIONS: Together, these findings provide compelling evidence for differences in social/emotional processing and underlying neural circuitry in siblings of individuals with autism, supporting the notion of unique endophenotypes associated with the broad autism phenotype.
Zotero Collections:

Although there are many imaging studies on traditional ROI-based amygdala volumetry, there are very few studies on modeling amygdala shape variations. This paper presents a unified computational and statistical framework for modeling amygdala shape variations in a clinical population. The weighted spherical harmonic representation is used to parameterize, smooth out, and normalize amygdala surfaces. The representation is subsequently used as an input for multivariate linear models accounting for nuisance covariates such as age and brain size difference using the SurfStat package that completely avoids the complexity of specifying design matrices. The methodology has been applied for quantifying abnormal local amygdala shape variations in 22 high functioning autistic subjects.
Zotero Collections:

According to the Conceptual Act Theory of Emotion, the situated conceptualization used to construe a situation determines the emotion experienced. A neuroimaging experiment tested two core hypotheses of this theory: (1) different situated conceptualizations produce different forms of the same emotion in different situations, (2) the composition of a situated conceptualization emerges from shared multimodal circuitry distributed across the brain that produces emotional states generally. To test these hypotheses, the situation in which participants experienced an emotion was manipulated. On each trial, participants immersed themselves in a physical danger or social evaluation situation and then experienced fear or anger. According to Hypothesis 1, the brain activations for the same emotion should differ as a function of the preceding situation (after removing activations that arose while constructing the situation). According to Hypothesis 2, the critical activations should reflect conceptual processing relevant to the emotion in the current situation, drawn from shared multimodal circuitry underlying emotion. The results supported these predictions and demonstrated the compositional process that produces situated conceptualizations dynamically.
Zotero Collections:

Developments in technologic and analytical procedures applied to the study of brain electrical activity have intensified interest in this modality as a means of examining brain function. The impact of these new developments on traditional methods of acquiring and analyzing electroencephalographic activity requires evaluation. Ultimately, the integration of the old with the new must result in an accepted standardized methodology to be used in these investigations. In this paper, basic procedures and recent developments involved in the recording and analysis of brain electrical activity are discussed and recommendations are made, with emphasis on psychophysiological applications of these procedures.
Zotero Collections:

Lower social class (or socioeconomic status) is associated with fewer resources, greater exposure to threat, and a reduced sense of personal control. Given these life circumstances, one might expect lower class individuals to engage in less prosocial behavior, prioritizing self-interest over the welfare of others. The authors hypothesized, by contrast, that lower class individuals orient to the welfare of others as a means to adapt to their more hostile environments and that this orientation gives rise to greater prosocial behavior. Across 4 studies, lower class individuals proved to be more generous (Study 1), charitable (Study 2), trusting (Study 3), and helpful (Study 4) compared with their upper class counterparts. Mediator and moderator data showed that lower class individuals acted in a more prosocial fashion because of a greater commitment to egalitarian values and feelings of compassion. Implications for social class, prosocial behavior, and economic inequality are discussed.
Zotero Collections:

We present a new subcortical structure shape modeling framework using heat kernel smoothing constructed with the Laplace-Beltrami eigenfunctions. The cotan discretization is used to numerically obtain the eigenfunctions of the Laplace-Beltrami operator along the surface of subcortical structures of the brain. The eigenfunctions are then used to construct the heat kernel and used in smoothing out measurements noise along the surface. The proposed framework is applied in investigating the influence of age (38-79 years) and gender on amygdala and hippocampus shape. We detected a significant age effect on hippocampus in accordance with the previous studies. In addition, we also detected a significant gender effect on amygdala. Since we did not find any such differences in the traditional volumetric methods, our results demonstrate the benefit of the current framework over traditional volumetric methods.
Zotero Collections:

BACKGROUND: Although it has been hypothesized that glucocorticoid hypersecretion in depressed patients leads to neuronal atrophy in the hippocampus, magnetic resonance imaging (MRI) -based morphometry studies of the hippocampus to date have produced mixed results. METHODS: In our MRI study, hippocampal volumes were measured in 25 depressed patients (13 with melancholia and 12 without melancholia) and 15 control subjects. RESULTS: No significant differences in hippocampus volumes were found between any of the subject groups, although within subjects right hippocampal volumes were found to be significantly larger than left hippocampal volumes. Additionally, right and total (left + right) hippocampal volumes in control and depressed subjects were found to be positively correlated with trait anxiety as measured by the state/trait anxiety inventory. CONCLUSIONS: Because our subject group is younger than those in studies reporting hippocampal atrophy, we conclude that longitudinal studies will be necessary for investigation of the lifelong course of hippocampal volumetry.
Zotero Collections:

Recent years have seen an explosion of interest in using neural oscillations to characterize the mechanisms supporting cognition and emotion. Oftentimes, oscillatory activity is indexed by mean power density in predefined frequency bands. Some investigators use broad bands originally defined by prominent surface features of the spectrum. Others rely on narrower bands originally defined by spectral factor analysis (SFA). Presently, the robustness and sensitivity of these competing band definitions remains unclear. Here, a Monte Carlo-based SFA strategy was used to decompose the tonic ("resting" or "spontaneous") electroencephalogram (EEG) into five bands: delta (1-5Hz), alpha-low (6-9Hz), alpha-high (10-11Hz), beta (12-19Hz), and gamma (>21Hz). This pattern was consistent across SFA methods, artifact correction/rejection procedures, scalp regions, and samples. Subsequent analyses revealed that SFA failed to deliver enhanced sensitivity; narrow alpha sub-bands proved no more sensitive than the classical broadband to individual differences in temperament or mean differences in task-induced activation. Other analyses suggested that residual ocular and muscular artifact was the dominant source of activity during quiescence in the delta and gamma bands. This was observed following threshold-based artifact rejection or independent component analysis (ICA)-based artifact correction, indicating that such procedures do not necessarily confer adequate protection. Collectively, these findings highlight the limitations of several commonly used EEG procedures and underscore the necessity of routinely performing exploratory data analyses, particularly data visualization, prior to hypothesis testing. They also suggest the potential benefits of using techniques other than SFA for interrogating high-dimensional EEG datasets in the frequency or time-frequency (event-related spectral perturbation, event-related synchronization/desynchronization) domains.
Zotero Collections:

Using functional magnetic resonance imaging, we examined whether individual differences in amygdala activation in response to negative relative to neutral information are related to differences in the speed with which such information is evaluated, the extent to which such differences are associated with medial prefrontal cortex function, and their relationship with measures of trait anxiety and psychological well-being (PWB). Results indicated that faster judgments of negative relative to neutral information were associated with increased left and right amygdala activation. In the prefrontal cortex, faster judgment time was associated with relative decreased activation in a cluster in the ventral anterior cingulate cortex (ACC, BA 24). Furthermore, people who were slower to evaluate negative versus neutral information reported higher PWB. Importantly, higher PWB was strongly associated with increased activation in the ventral ACC for negative relative to neutral information. Individual differences in trait anxiety did not predict variation in judgment time or in amygdala or ventral ACC activity. These findings suggest that people high in PWB effectively recruit the ventral ACC when confronted with potentially aversive stimuli, manifest reduced activity in subcortical regions such as the amygdala, and appraise such information as less salient as reflected in slower evaluative speed.
Zotero Collections:

The degree to which perceived controllability alters the way a stressor is experienced varies greatly among individuals. We used functional magnetic resonance imaging to examine the neural activation associated with individual differences in the impact of perceived controllability on self-reported pain perception. Subjects with greater activation in response to uncontrollable (UC) rather than controllable (C) pain in the pregenual anterior cingulate cortex (pACC), periaqueductal gray (PAG), and posterior insula/SII reported higher levels of pain during the UC versus C conditions. Conversely, subjects with greater activation in the ventral lateral prefrontal cortex (VLPFC) in anticipation of pain in the UC versus C conditions reported less pain in response to UC versus C pain. Activation in the VLPFC was significantly correlated with the acceptance and denial subscales of the COPE inventory [Carver, C. S., Scheier, M. F., & Weintraub, J. K. Assessing coping strategies: A theoretically based approach. Journal of Personality and Social Psychology, 56, 267-283, 1989], supporting the interpretation that this anticipatory activation was associated with an attempt to cope with the emotional impact of uncontrollable pain. A regression model containing the two prefrontal clusters (VLPFC and pACC) predicted 64% of the variance in pain rating difference, with activation in the two additional regions (PAG and insula/SII) predicting almost no additional variance. In addition to supporting the conclusion that the impact of perceived controllability on pain perception varies highly between individuals, these findings suggest that these effects are primarily top-down, driven by processes in regions of the prefrontal cortex previously associated with cognitive modulation of pain and emotion regulation.
Zotero Collections:

The present study investigated the premise that individual differences in autonomic physiology could be used to specify the nature and consequences of information processing taking place in medial prefrontal regions during cognitive reappraisal of unpleasant pictures. Neural (blood oxygenation level-dependent functional magnetic resonance imaging) and autonomic (electrodermal [EDA], pupil diameter, cardiac acceleration) signals were recorded simultaneously as twenty-six older people (ages 64-66 years) used reappraisal to increase, maintain, or decrease their responses to unpleasant pictures. EDA was higher when increasing and lower when decreasing compared to maintaining. This suggested modulation of emotional arousal by reappraisal. By contrast, pupil diameter and cardiac acceleration were higher when increasing and decreasing compared to maintaining. This suggested modulation of cognitive demand. Importantly, reappraisal-related activation (increase, decrease>maintain) in two medial prefrontal regions (dorsal medial frontal gyrus and dorsal cingulate gyrus) was correlated with greater cardiac acceleration (increase, decrease>maintain) and monotonic changes in EDA (increase>maintain>decrease). These data indicate that these two medial prefrontal regions are involved in the allocation of cognitive resources to regulate unpleasant emotion, and that they modulate emotional arousal in accordance with the regulatory goal. The emotional arousal effects were mediated by the right amygdala. Reappraisal-related activation in a third medial prefrontal region (subgenual anterior cingulate cortex) was not associated with similar patterns of change in any of the autonomic measures, thus highlighting regional specificity in the degree to which cognitive demand is reflected in medial prefrontal activation during reappraisal.
Zotero Collections:

Pages

  • Page
  • of 4