Skip to main content Skip to search
Details
Displaying 1 - 5 of 5
BACKGROUND: Functional magnetic resonance imaging (fMRI) techniques were used to identify the neural circuitry underlying emotional processing in control and depressed subjects. Depressed subjects were studied before and after treatment with venlafaxine. This new technique provides a method to noninvasively image regional brain function with unprecedented spatial and temporal resolution. METHOD: Echo-planar imaging was used to acquire whole brain images while subjects viewed positively and negatively valenced visual stimuli. Two control subjects and two depressed subjects who met DSM-IV criteria for major depression were scanned at baseline and 2 weeks later. Depressed subjects were treated with venlafaxine after the baseline scan. RESULTS: Preliminary results from this ongoing study revealed three interesting trends in the data. Both depressed patients demonstrated considerable symptomatic improvement at the time of the second scan. Across control and depressed subjects, the negative compared with the positive pictures elicited greater global activation. In both groups, activation induced by the negative pictures decreased from the baseline scan to the 2-week scan. This decrease in activation was also present in the control subjects when they were exposed to the positive pictures. In contrast, when the depressed subjects were presented with the positive pictures they showed no activation at baseline, whereas after 2 weeks of treatment an area of activation emerged in right secondary visual cortex. CONCLUSION: While preliminary, these results demonstrate the power of using fMRI to study emotional processes in normal and depressed subjects and to examine mechanisms of action of antidepressant drugs.
Zotero Collections:

Echo-Planar functional magnetic resonance imaging (EP-fMRI) was used to study the activity of the amygdala while three normal female subjects viewed alternating blocks of affectively neutral and affectively negative still pictures. Bilateral activation in the amygdala that was significantly correlated with the changing valence of the visual stimuli was found in all three subjects. These findings are consistent with the large corpus of data from non-human studies suggesting that the amygdala is a key structure for extracting the affective significance from external stimuli. This is the first known report of phasic amygdala activation detected with EP-fMRI in normal human subjects responding to affective stimuli.
Zotero Collections:

The role of the amygdala in major depression was investigated. Resting regional cerebral metabolic rate (rCMRglu) was measured with [18F]fluorodeoxyglucose positron emission tomography (PET) in two samples of subjects using two different PET cameras. The samples consisted of 10 and 17 medication-free depressives and 11 and 13 controls, respectively. Using coregistration of PET and magnetic resonance images, regions were individually delineated for the amygdala and thalamus, the latter of which was used as a control region. Within the depressed groups, right amygdalar rCMRglu was positively correlated with negative affect. Thalamic rCMRglu was not related to negative affect, and amygdalar rCMRglu accounted for a significant portion of variance in depressives' negative affect scores over and above the contribution of thalamic rCMRglu.
Zotero Collections:

Four U.S. sites formed a consortium to conduct a multisite study of fMRI methods. The primary purpose of this consortium was to examine the reliability and reproducibility of fMRI results. FMRI data were collected on healthy adults during performance of a spatial working memory task at four different institutions. Two sets of data from each institution were made available. First, data from two subjects were made available from each site and were processed and analyzed as a pooled data set. Second, statistical maps from five to eight subjects per site were made available. These images were aligned in stereotactic space and common regions of activation were examined to address the reproducibility of fMRI results when both image acquisition and analysis vary as a function of site. Our grouped and individual data analyses showed reliable patterns of activation in dorsolateral prefrontal cortex and posterior parietal cortex during performance of the working memory task across all four sites. This multisite study, the first of its kind using fMRI data, demonstrates highly consistent findings across sites.
Zotero Collections:

Test-retest reliability of resting regional cerebral metabolic rate of glucose (rCMR) was examined in selected subcortical structures: the amygdala, hippocampus, thalamus, and anterior caudate nucleus. Findings from previous studies examining reliability of rCMR suggest that rCMR in small subcortical structures may be more variable than in larger cortical regions. We chose to study these subcortical regions because of their particular interest to our laboratory in its investigations of the neurocircuitry of emotion and depression. Twelve normal subjects (seven female, mean age = 32.42 years, range 21-48 years) underwent two FDG-PET scans separated by approximately 6 months (mean = 25 weeks, range 17-35 weeks). A region-of-interest approach with PET-MRI coregistration was used for analysis of rCMR reliability. Good test-retest reliability was found in the left amygdala, right and left hippocampus, right and left thalamus, and right and left anterior caudate nucleus. However, rCMR in the right amygdala did not show good test-retest reliability. The implications of these data and their import for studies that include a repeat-test design are considered.
Zotero Collections: