Skip to main content Skip to search
Details
Displaying 1 - 4 of 4
BACKGROUND: Functional magnetic resonance imaging (fMRI) techniques were used to identify the neural circuitry underlying emotional processing in control and depressed subjects. Depressed subjects were studied before and after treatment with venlafaxine. This new technique provides a method to noninvasively image regional brain function with unprecedented spatial and temporal resolution. METHOD: Echo-planar imaging was used to acquire whole brain images while subjects viewed positively and negatively valenced visual stimuli. Two control subjects and two depressed subjects who met DSM-IV criteria for major depression were scanned at baseline and 2 weeks later. Depressed subjects were treated with venlafaxine after the baseline scan. RESULTS: Preliminary results from this ongoing study revealed three interesting trends in the data. Both depressed patients demonstrated considerable symptomatic improvement at the time of the second scan. Across control and depressed subjects, the negative compared with the positive pictures elicited greater global activation. In both groups, activation induced by the negative pictures decreased from the baseline scan to the 2-week scan. This decrease in activation was also present in the control subjects when they were exposed to the positive pictures. In contrast, when the depressed subjects were presented with the positive pictures they showed no activation at baseline, whereas after 2 weeks of treatment an area of activation emerged in right secondary visual cortex. CONCLUSION: While preliminary, these results demonstrate the power of using fMRI to study emotional processes in normal and depressed subjects and to examine mechanisms of action of antidepressant drugs.
Zotero Collections:

Echo-Planar functional magnetic resonance imaging (EP-fMRI) was used to study the activity of the amygdala while three normal female subjects viewed alternating blocks of affectively neutral and affectively negative still pictures. Bilateral activation in the amygdala that was significantly correlated with the changing valence of the visual stimuli was found in all three subjects. These findings are consistent with the large corpus of data from non-human studies suggesting that the amygdala is a key structure for extracting the affective significance from external stimuli. This is the first known report of phasic amygdala activation detected with EP-fMRI in normal human subjects responding to affective stimuli.
Zotero Collections:

Separate, extended series of positive, negative, and neutral pictures were presented to 24 (12 men, 12 women) undergraduates. Each series was presented on a different day, with full counterbalancing of presentation orders. Affective state was measured using (a) orbicularis oculi activity in response to acoustic startle probes during picture presentation, (b) corrugator supercilii activity between and during picture presentation, and (c) changes in self-reports of positive and negative affect. Participants exhibited larger eyeblink reflex magnitudes when viewing negative than when viewing positive pictures. Corrugator activity was also greater during the negative than during the positive picture set, during both picture presentation and the period between pictures. Self-reports of negative affect increased in response to the negative picture set, and self-reports of positive affect were greatest following the positive picture set. These findings suggest that extended picture presentation is an effective method of manipulating affective state and further highlight the utility of startle probe and facial electromyographic measures in providing on-line readouts of affective state.
Zotero Collections:

Four U.S. sites formed a consortium to conduct a multisite study of fMRI methods. The primary purpose of this consortium was to examine the reliability and reproducibility of fMRI results. FMRI data were collected on healthy adults during performance of a spatial working memory task at four different institutions. Two sets of data from each institution were made available. First, data from two subjects were made available from each site and were processed and analyzed as a pooled data set. Second, statistical maps from five to eight subjects per site were made available. These images were aligned in stereotactic space and common regions of activation were examined to address the reproducibility of fMRI results when both image acquisition and analysis vary as a function of site. Our grouped and individual data analyses showed reliable patterns of activation in dorsolateral prefrontal cortex and posterior parietal cortex during performance of the working memory task across all four sites. This multisite study, the first of its kind using fMRI data, demonstrates highly consistent findings across sites.
Zotero Collections: